Communications for Statistical Applications and Methods
/
v.22
no.4
/
pp.349-359
/
2015
We study a semiparametric Bayesian approach to small area estimation under a nested error linear regression model with area level covariate subject to measurement error. Consideration is given to radial basis functions for the regression spline and knots on a grid of equally spaced sample quantiles of covariate with measurement errors in the nested error linear regression model setup. We conduct a hierarchical Bayesian structural measurement error model for small areas and prove the propriety of the joint posterior based on a given hierarchical Bayesian framework since some priors are defined non-informative improper priors that uses Markov Chain Monte Carlo methods to fit it. Our methodology is illustrated using numerical examples to compare possible models based on model adequacy criteria; in addition, analysis is conducted based on real data.
Communications for Statistical Applications and Methods
/
v.3
no.3
/
pp.31-37
/
1996
A hierarchical loglinear model comparison method is developed which is based on the well kmown partitioned likelihood ratio statistiss. For any paels, we can regard the difference of the geedness of fit statistics as the variation explained by a full model, and develop a partial test to compare a full model with a reduced model in that hierarchy. Note that this has similar arguments as that of the regression analysis.
In mobile systems, energy efficiency is critical to extend battery life. Therefore, power consumption should be taken into account to develop software in addition to performance, Efficient software design in power and performance is possible if accurate power prediction is accomplished during the execution of software, In this paper, power estimation model is developed using statistical analysis, The proposed model analyzes processor behavior Quantitatively using the data of performance monitoring events and power consumption collected by executing various benchmark programs, And then representative hardware events on power consumption are selected using hierarchical clustering, The power prediction model is established by regression analysis in which the selected events are independent variables and power is a response variable, The proposed model is applied to a PXA320 mobile processor based on Intel XScale architecture and shows average estimation error within 4% of the actual measured power consumption of the processor.
Purpose: This study tests the suitability of a new technology acceptance model for a mobile payment system by checking how statistically significant the change is from the UTAUT (Unified Theory of Acceptance and Use of Technology) and UTAUT 2 models. Research, Data, and Methodology: We surveyed 250 students at Incheon University who are using the mobile payment system. The analysis was conducted on 243 valid questionnaires. The survey was conducted for one month in October 2018. The collected data were analyzed using SPSS and hierarchical regression analysis was applied. Results: Using hierarchical regression analysis, this study confirmed whether the newly added hedonic motivation, switching cost, and perceived risk variables in the UTAUT2 model are good explanatory variables. Mobile payment usage experience was found to have a moderating effect on mobile payment reuse intention. According to the analysis, the UTAUT2 model brought about more influential change than the variables of the UTAUT model. Conclusions: This study found that consumers' psychological factors added in the UTAUT2 model greatly influenced the reuse intention for mobile payment. As an implication of this study, mobile payment providers need to develop strategies that could meet hedonic motivation, switching cost and perceived risk for their customers.
A hierarchical linear model(HLM) provides advantages over existing traditional statistical methods (e.g., ordinary least squares regression, repeated measures analysis of variance, etc.) for analyzing multilevel/longitudinal data or diary methods. HLM can gauge a more precise estimation of lower-level effects within higher-level units, as well as describe each individual's growth trajectory across time with improved estimation. This article 1) provides scholars who study children and families with an overview of HLM (i.e., statistical assumptions, advantages/disadvantages, etc.), 2) provides an empirical study to illustrate the application of HLM, and 3) discusses the application of HLM to the study of children and families. In addition, this article provided useful information on available articles and websites to enhance the reader's understanding of HLM.
Recently, There has been an increasing of utilization IT, and studies have been conducted on predicting learning results. In this study, Learning activity data were collected that could affect learning outcomes by using learning analysis. The survey was conducted at a university in South Chung-Cheong Province from October to December 2018, with 1,062 students taking part in the survey. First, A Hierarchical regression analysis was conducted by organizing a model of individual, academic, and behavioral factors for learning results to ensure the validity of predictors in machine learning. The model of hierarchical regression was significant, and the explanatory power (R2) was shown to increase step by step, so the variables injected were appropriate. In addition, The linear regression analysis method of machine learning was used to determine how predictable learning outcomes are, and its error rate was collected at about 8.4%.
The purpose of this study is to evaluate the actual conditions of peer victimization and to examine how the various factors of school climate influence peer victimization. Analysis on the relationship between various school climate and peer victimization has not been yet dealt with in Korea. Participants in this study were middle school students chosen from 11 middle schools in Seoul, by convenience sampling. A total of 1,204 surveys were then analyzed. Methods for analysis included Frequencies, Descriptives, Pearson's Correlation, Hierarchical Regression. From the result of the analysis, the level of verbal violence came out to be a relatively high form of peer victimization. The hierarchical regression were conducted in two steps. The second model's descriptive variable was higher by 19.6% than the first model. The variables of interaction between teacher and student in peer violence(${\beta}=.130$), of school facility maintenance(${\beta}=.067$), of safety of school environment(${\beta}=.331$), and economic status and sex out of controlled variables were proved to be of significance, and those variables explained 23.0% of the entire model. Based on the results of this study, practical and effective policy solutions to improve the school climate better have been suggested.
Journal of the Korean Society of Clothing and Textiles
/
v.24
no.6
/
pp.928-939
/
2000
This thesis will study the determinants of consumer satisfaction based on the disconfirmation theory. The proposed questions are first, to find out if desire and expectation are conceptually distinct. Second, to study the effects of desire, expectation, perceived performance, desire congruency, and expectation congruency on clothing satisfaction. The data used in this thesis were obtained from a two stage longitudinal survey. SPSS WIN 8.0 was used for the analysis and the following method such as mean, correlation, t-test, hierarchical regression were applied. The results indicate that first, according to the correlation analysis and crosstab analysis, satisfaction and desire were perceived as two different concepts. Second, using the hierarchical regression analysis to compare the effects of determinants of consumer satisfaction, the model of desire, expectation, performance, desires congruency, expectations congruency best explain the clothing satisfaction. Among them, effects of performance had the strongest impact. Expectation did not influence satisfaction but desire did.
Objective: This study aimed to investigate the effects of children's characteristics and childcare teachers' attributes on the frequency and level of imaginative play in two-year-old classrooms. Methods: The study involved 191 toddlers, their mothers, and 32 teachers from childcare centers. Toddler characteristics encompassed temperament along with demographic variables such as gender and age. Teacher' attributes related to play included playfulness, play-support belief, and interactions with toddlers. Data analysis was conducted using SPSS 22.0 and HLM 8.2 software, employing basic analysis, hierarchical linear analysis, and hierarchical regression analysis. Results: First, as toddlers' age increased, both the frequency and level of their imaginative play increased. Second, individual-level model analysis revealed a positive effect of toddlers' extroversion on the level of imaginative play. Third, the class-level model results indicated that teachers' emotions had a negative effect, whereas their encouragement positively influenced the level of imaginative play. Conclusion/Implications: The significance of this study lies in its utilization of a multilayered model analysis, which offers a more robust examination of variable influences by accounting for hierarchical data structures.
Gene-gene interaction (GGI) analysis is known to play an important role in explaining missing heritability. Many previous studies have already proposed software to analyze GGI, but most methods focus on a binary phenotype in a case-control design. In this study, we developed "Hierarchical structural CoMponent analysis of Gene-Gene Interactions" (HisCoM-GGI) software for GGI analysis with a continuous phenotype. The HisCoM-GGI method considers hierarchical structural relationships between genes and single nucleotide polymorphisms (SNPs), enabling both gene-level and SNP-level interaction analysis in a single model. Furthermore, this software accepts various types of genomic data and supports data management and multithreading to improve the efficiency of genome-wide association study data analysis. We expect that HisCoM-GGI software will provide advanced accessibility to researchers in genetic interaction studies and a more effective way to understand biological mechanisms of complex diseases.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.