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A Model Comparison Method
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Abstract

A hierarchical loglinear model comparison method is developed which is based on
the well known partitioned likelihood ratio statistics. For any pair of hierarchical
loglinear models, we can regard the difference of the goodness of fit statistics as the
variation explained by a full model, and develop a partial test to compare a full model
with a reduced model in that hierarchy. Note that this has similar arguments as that
of the regression analysis.

1. Introduction

Consider the hierarchical loglinear model to describe the data structures. It is hard to choose
the well fitted loglinear model among all possible models. Consequently, many loglinear model
selection methods have been suggested. One of the commonly used methods is to use the
partitioned likelihood ratio statistics. We studied the properties of the partitioned statistics and
their usage in many categorical data analysis textbooks (e.g. Harberman (1974), Bishop,
Fienberg and Holland (1975), Fienberg (1983), Christensen (1990), Andersen (1991), Agresti
(1990) and many others).

In this article, we develop a model comparison method by using analysis of variations based
on the partition of the likelihood ratio statistics. For a multidimensional categorical data, the
partitioned likelihood ratio statistics can be summarized into some tables which have the
exactly same appearance as the ANOVA tables. Such suggested tables provide useful
informations to explain the data structure and evaluate the effect of each term in the loglinear
model. With these tables, several partial test statistics are proposed to test corresponding
paired hierarchical loglinear models : one of each pair can be regarded as a full model and the
other is a reduced model. Moreover, these tests are compared with the coefficients of
determination of Christensen (1990) as a measure of the goodness of fit for a model.
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2. Partial tests for hierarchical loglinear model comparisons

In the regression analysis, the total sum of squares (SST) is defined as the sum of
squares of deviations from the intercept of the regression line, i.e., the mean of the dependent
variable. We may partition this sum of squares into two parts : one gives information on
error which is referred to as the sum of squares of residuals ( SSE), and the other does on
the regression line referred to as the regression sum of squares (SSR). It is convenient to

tabulate each component of the partition into a summary table called an analysis of variation
(ANOVA) table, and the well known ANOVA table is used to evaluate the goodness of fit
for the pre-designed model.

For categorical data, Gini (1912) had defined the total variation. Keeping with analysis of
variation terminology, Light and Margolin (1971) partitioned Gini's total variation ( TSS) into
the within-group sum of square ( WSS) and the between-group sum of squares ( BSS) for
the two-dimensional contingency table, and they defined the ratio BSS/7SS as a sample

measure of the proportion of variation in the row variable which is attributable to the column
variable.

Now suppose throughout this paper that our attention is restricted to the hierarchical
loglinear models for complete contingency tables. We apply such partition method to
hierarchical loglinear models and develop a partial test for multidimensional categorical data.
The likelihood ratio statistic to test the goodness of fit for an assigned loglinear model,

G = 23 xlog(x/ m) )

is the variation between the maximum likelihood estimates ( 7) and the observation values
(x). We could define G*(a) as the likelihood ratio test statistic for loglinear model (a), and
G2(b) is that of a hierarchical model (b) which includes model (a) with degrees of freedom
dy, and dj, respectively. Under this hierarchy, it satisfies that G*(@) =G*(b), and we can

partition G%(a) into the following :

G¥a) = [G¥a)—GHb)]1+G%(b) (2)
= 25 xlog( m?/ m?) +23 xlog(x/ m®),

~(a)

~(b)
where m ° and m()

are the MLEs for model (a) and (), respectively.
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From this partition, G*(4) can be regarded as the variation of errors which the estimates
of model (b) do not explain the observed values, in other words, the unexplained variation by
model (8). G%(a)—G%(b) represents the improved goodness of fit by the effect of the terms
added to model (&) from model (@), that is, the explained variation by model (b) in
contrast with model (a). If we focus to explain the observed values through two hierarchcal
log-linear models (a) and (b) satisfying G*(a) >G*(b), then the variation G*(a) about the
deviations by the smaller model (@) could be regarded as the total variation. Let us denote
G*(b) = SSE(b), G*(a)—G¥(b) = SSR(dlb), and G*(a)=SST(a). Then equation (2) can be

rewritten as
SST(a) = SSR(alb) + SSE(b). (3)

For the above two hierarchical models (@) and (4), model (@) can be regarded as the
reduced model which is smaller than model (b), and model (&) is the full model. In the

analysis of the categorical data on two dimensional contingency table, the hierarchical
structure only contains two models ; one is the complete independence model and the other is

the full model which is the saturated model, so that G*(8) = 0. Therefore, such partitioning

technique in (2) will be meaningful for more than three dimensional categorical data.
Let us consider a pair of hierarchical loglinear models for more than three dimensional
categorical data, and develop an analysis of variation based on the partition of the likelihood

ratio statistic G? to evaluate the following models.

model (a) : a reduced model ,
model (b) : a full model which includes model (a).

According to the partition technique discussed in (2), we can summarize the partitioned
terms into the following ANOVA table.

<Table 1> The ANOVA Table

S.V. df. Variation
SSR(a|b) dy—d, G*(a)—G¥(b)
SSE(b) d; G¥(b)
SST(a) d, Gia)




34 Hyun Jip Choi, Chong Sun Hong

We note that G*(a)—G*(b) and G*(b) in <Table 1> follow asymptotic ¥* distributions with
degrees of freedom d;—d, and d, respectively. Hence the ratio of these two statistics

[Gz(a)—Gz(b) ]/(d1_d2)

F = GH(b) /d,

@

follows an asymptotic F distribution with degrees of freedom d,—d, and d,. Therefore we

can test the following hypothesis by using the F° statistics.

H; : the reduced model (a)
H, : the full model ()

The variation explained by  model () in contrast with model (a),
SSR(alb) = G*(a)—G*(b), might be due to the effect of the added terms from model (a)
to model (d). If the effect of these added terms is significant for describing such a model
structure, it indicates that there exists a big difference between goodness of fit of model (a)

and model (b). Hence the large value of F° statistic will guide us that the null hypothesis
has to be rejected.
Now, we consider model (c) such that G*(5)=G%(c) with the degrees of freedom ds.

Under this hierarchy, we can get the equations :

G a) = [G*(a)—GUb)1+GA(b)
) 6))
GUb) = [G*HH-GUII+G¥ o)

These equations can be summarized into the sequential ANOVA table which has the expanded
form of <Table 1>.

<Table 2> The Sequential ANOVA Table

S.V. df. Variation
SSR(alb) dy—d, G*(a)—G*(b)
SSE(8) d, GX(b)
SSR(bl¢) dy—ds GH(b)—G*(o)
SSE(c) dy G0
SSTa) d, G¥a)
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In <Table 2>, SSR(blc) is the improved fit by model (c¢) in contrast with model (5). At
this moment, we can regard model (b) as the reduced model and model (c¢) as the full
model. Then, for model (b) and (c¢), the statistic in (4) is defined as

[G?(0) —G¥ () 1/(dy—dy)

Fc - Gz( C) /d3 . (6)

Also this statistic follows an aymptotic F distribution with degrees of freedom d,—d; and

d3, so that we can test the following hypothesis.

Hy : the reduced model ()
H, : the full model (c)

Note that we may consider SSR(z|b) and SSR(blc) as the type I sum of squares

(sequential partial sum of squares) in the analysis of regression, so that we might call this
method as the partial test in the analysis of loglinear model.

Christensen (1990) defined the coefficient of determination, RZ, as a measure of evaluating

the goodness of fit for a hierarchical model (4) when model (&) is the smallest :

_ GYa)—G*(b) _ _SSR(alb) _
R = e = 5T = R%,.

(7

G*(a) in the denominator of (7) could be regarded as the measure of the total variability in
the data and G?(a)—G%(b) in the numerator measures the variability explained by model
(b). So R? of Christensen could be denoted as R%, which is the proportion of the total

variability explained by model (4). We can expand this fact for model (b) and model (c)
and get

2 _ GH(B)=G
R(HC GZ(a) . (8)

Since the numerator is the explained variation by model (c¢) in contrast with (), we will
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call this Rz(uc) as the partial coefficient of determination (see Choi and Hong (1995) for more

details). If the F° statistic in (4) or (6) has a large value, then R%, or R%yy also has a
considerable value.
In order to apply the sequential F° testing method discussed previously, we take the well

known 3x2x2x2 detergent preference data of Ries and Smith (1963). Through the

combinations of the four categorical variables of the data, we can consider many hierarchical
models. Since Bishop et. al. (1975), Fienberg (1983), and others considered the following six
hierarchical loglinear models for model selection, we consider the same hierarchy.

<Table 3> Goodness of fits for Detergent Preference data:

ID MODEL df. G? Differences | d.f. G?

(a) [11121(3][4] 18 42,93+

(b) (11(31[24] 17 2235 | (a) and (b) 1 20.58*
(c) [11[24](34] 16 1799 | (b) and (¢) 1 4.36*
(@ [131[241[34] 14 1189 | (c) and (d) 2 6.10%
(e) [11[234] 12 841 | (d) and (e) 2 3.48

(f) [1231[234] 8 566 | (e) and (f) 4 2.75

* indicates that the p-value of the statistic is less than 5% significant level.

From the result in the right side of <Table 2>, one might choose all models which include
model (b) as the well fitted model . However, the left side of <Table 3> suggests that the

model (d) is the best in the given hierarchy. Now we can apply the comparison test for the
adjacent pair of models sequentially and the results are summarized into <Table 4>.

<Table 4> The Sequential ANOVA Table

Comparison F° p—value
with model (a)
and (b) 15.65 0.001
with model (b) 388 0.066
and (c)
with model (c)
and (d) 3.59 0.055
with model (d) 248 0.125
and (e)
with model (e)
and (f) 1.01 0.458
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As a result in <Table 4>, model (b) would be selected to the well fitted model at 5%

significant level. However, if we set up the significant level as 10%, the same result can be
obtained as that of <Table 3>.

3. Concluding remark

We developed a test for comparing a reduced and a full loglinear models in a given
hierarchical structure. Since the suggested test statistic is based on the ratio of an explained
and an unexplained variations, it can determined the effect of the added terms to the full
model for describing the data structure. Furthermore, we may adapt the sequential tests to
model selection method for hierarchical structures. We can possibly say that this test statistics
is more conservative than the partitioned statatistic which is commonly used for model
selection. Nonetheless the conservativeness is not a crucial defect for the comparisons since
the selection processes have involved many decision strategies and a well fitted model for a
given data may differ from personal opinions.
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