• 제목/요약/키워드: Hierarchical regression analysis model

검색결과 285건 처리시간 0.022초

Bayesian Curve-Fitting in Semiparametric Small Area Models with Measurement Errors

  • Hwang, Jinseub;Kim, Dal Ho
    • Communications for Statistical Applications and Methods
    • /
    • 제22권4호
    • /
    • pp.349-359
    • /
    • 2015
  • We study a semiparametric Bayesian approach to small area estimation under a nested error linear regression model with area level covariate subject to measurement error. Consideration is given to radial basis functions for the regression spline and knots on a grid of equally spaced sample quantiles of covariate with measurement errors in the nested error linear regression model setup. We conduct a hierarchical Bayesian structural measurement error model for small areas and prove the propriety of the joint posterior based on a given hierarchical Bayesian framework since some priors are defined non-informative improper priors that uses Markov Chain Monte Carlo methods to fit it. Our methodology is illustrated using numerical examples to compare possible models based on model adequacy criteria; in addition, analysis is conducted based on real data.

A Model Comparison Method for Hierarchical Loglinear Models

  • Hyun Jip Choi;Chong Sun Hong
    • Communications for Statistical Applications and Methods
    • /
    • 제3권3호
    • /
    • pp.31-37
    • /
    • 1996
  • A hierarchical loglinear model comparison method is developed which is based on the well kmown partitioned likelihood ratio statistiss. For any paels, we can regard the difference of the geedness of fit statistics as the variation explained by a full model, and develop a partial test to compare a full model with a reduced model in that hierarchy. Note that this has similar arguments as that of the regression analysis.

  • PDF

성능 모니터링 이벤트들의 통계적 분석에 기반한 모바일 프로세서의 전력 예측 (Power Prediction of Mobile Processors based on Statistical Analysis of Performance Monitoring Events)

  • 윤희성;이상정
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제15권7호
    • /
    • pp.469-477
    • /
    • 2009
  • 제한된 용량의 배터리로 동작해야 하는 모바일 시스템에서는 소프트웨어 설계시 성능뿐만 아니라 전력소모도 고려해야 한다. 따라서 소프트웨어의 실행 중에 전력소모를 정확하게 예측할 수 있으면 전력과 성능을 고려한 효율적인 소프트웨어의 설계가 가능해진다. 본 논문에서는 모바일 프로세서의 전력소모 예측을 위해 정량적으로 프로세서의 동작을 분석하고 모델링 하는 통계적인 분석 방법을 제안한다. 제안된 방식은 다양한 벤치마크 프로그램들을 실행하여 프로세서의 성능 모니터링 이벤트들과 전력소모 데이터를 수집한 후 계층적 클러스터링(hierarchical clustering) 분석 등을 적용하여 서로 중복되지 않으면서 전력소모에 크게 기여하는 대표적인 성능 모니터링 이벤트들을 추출한다. 전력 예측 모델은 선택된 성능 모니터링 이벤트들이 독립변수가 되고 전력소모가 종속변수가 되는 회귀분석(regression analysis)을 수행하여 개발한다. 전력 예측 모델은 Intel XScale 아키텍처 기반의 PXA320 모바일 프로세서에 적용하여 평균 4% 이내의 에러율로 전력소모를 예측할 수 있음을 보인다.

Factors Influencing the Reuse of Mobile Payment Services in Retail

  • KIM, Soon-Hong;YOO, Byong-Kook
    • 유통과학연구
    • /
    • 제18권3호
    • /
    • pp.53-65
    • /
    • 2020
  • Purpose: This study tests the suitability of a new technology acceptance model for a mobile payment system by checking how statistically significant the change is from the UTAUT (Unified Theory of Acceptance and Use of Technology) and UTAUT 2 models. Research, Data, and Methodology: We surveyed 250 students at Incheon University who are using the mobile payment system. The analysis was conducted on 243 valid questionnaires. The survey was conducted for one month in October 2018. The collected data were analyzed using SPSS and hierarchical regression analysis was applied. Results: Using hierarchical regression analysis, this study confirmed whether the newly added hedonic motivation, switching cost, and perceived risk variables in the UTAUT2 model are good explanatory variables. Mobile payment usage experience was found to have a moderating effect on mobile payment reuse intention. According to the analysis, the UTAUT2 model brought about more influential change than the variables of the UTAUT model. Conclusions: This study found that consumers' psychological factors added in the UTAUT2 model greatly influenced the reuse intention for mobile payment. As an implication of this study, mobile payment providers need to develop strategies that could meet hedonic motivation, switching cost and perceived risk for their customers.

위계적 선형모형의 이해와 활용 (Understanding and Application of Hierarchical Linear Model)

  • 유정진
    • 아동학회지
    • /
    • 제27권3호
    • /
    • pp.169-187
    • /
    • 2006
  • A hierarchical linear model(HLM) provides advantages over existing traditional statistical methods (e.g., ordinary least squares regression, repeated measures analysis of variance, etc.) for analyzing multilevel/longitudinal data or diary methods. HLM can gauge a more precise estimation of lower-level effects within higher-level units, as well as describe each individual's growth trajectory across time with improved estimation. This article 1) provides scholars who study children and families with an overview of HLM (i.e., statistical assumptions, advantages/disadvantages, etc.), 2) provides an empirical study to illustrate the application of HLM, and 3) discusses the application of HLM to the study of children and families. In addition, this article provided useful information on available articles and websites to enhance the reader's understanding of HLM.

  • PDF

기계학습을 활용한 대학생 학습결과 예측 연구 (A Study on the Prediction of Learning Results Using Machine Learning)

  • 김연희;임수진
    • 한국콘텐츠학회논문지
    • /
    • 제20권6호
    • /
    • pp.695-704
    • /
    • 2020
  • 최근 교육분야에 IT의 활용이 증가하고 이를 통한 학습결과 예측에 대한 연구가 진행되고 있다. 본 연구에서는 학습분석을 참고하여 학습결과에 영향을 미칠 수 있는 학습활동 데이터를 수집하였다. 조사에 참여한 학생은 1062명으로, 조사는 2018년 10월부터 12월까지 충청남도 소재의 4년제 종합 사립대학인 A대학에서 진행되었다. 먼저 기계 학습의 예측 변인들의 타당성 확보를 위하여 학습결과에 대한 개인·학업·행동요인으로 모형을 구성하여 위계적 회귀 분석을 실시하였다. 위계적 회귀 분석의 모형이 유의하였고, 단계별로 설명력(R2)이 증가하는 것으로 나타나 투입된 변수들이 적절한 것으로 나타났다. 또한 기계학습의 선형 회귀분석방법을 통해 투입한 학습활동 변수가 학습 결과를 얼마나 예측할 수 있는지 확인하였으며, 오차율은 약 8.4%로 수집되었다.

학교분위기가 중학생의 또래폭력 피해경험에 미치는 영향 (The Effects of School Climate on Peer Victimization for Junior High School Students)

  • 김은영
    • 한국아동복지학
    • /
    • 제26호
    • /
    • pp.87-111
    • /
    • 2008
  • 본 연구는 중학생의 또래폭력피해 실태를 살펴보고, 우리나라에서 지금까지 진행되지 않은 또래폭력에 영향을 미치는 학교분위기의 다양한 요인을 파악하고 그 상대적인 영향력을 밝히는 것이다. 연구의 목적을 위해 서울지역에 있는 11개의 중학교를 편의표집 하여 선정된 중학생들이며 최종적으로 1,204부의 설문조사지를 분석하였다. 분석방법으로 빈도분석, 기술통계, 피어슨의 상관분석, 위계적 회귀분석을 사용하였다. 분석결과, 중학생의 또래폭력피해 행위 중 언어폭력의 피해행위가 상대적으로 높게 나타났다. 2단계로 구분하여 위계적 회귀분석을 실시하였다. 1단계 모델보다 2단계 모델에서는 설명 변량이 19.6% 증가하였다. 또래폭력 피해 행위에 교사와 학생간의 상호작용(${\beta}=.130$), 학교건물의 유지보수(${\beta}=.067$), 교내환경의 안전성(${\beta}=.331$)의 변수들과 통제변수 중 성별과 경제력이 유의미한 변수였으며 전체모델의 23.0%를 설명하고 있었다. 이와 같은 연구결과에 근거하여 학교분위기를 개선시키기 위한 실천적, 정책적 제언들을 제시하였다.

의복만족의 과정과 결정요인:20대 여성을 중심으로 (The Process and Determinants of Consumer Satisfaction in Clothing)

  • 최성주;임숙자
    • 한국의류학회지
    • /
    • 제24권6호
    • /
    • pp.928-939
    • /
    • 2000
  • This thesis will study the determinants of consumer satisfaction based on the disconfirmation theory. The proposed questions are first, to find out if desire and expectation are conceptually distinct. Second, to study the effects of desire, expectation, perceived performance, desire congruency, and expectation congruency on clothing satisfaction. The data used in this thesis were obtained from a two stage longitudinal survey. SPSS WIN 8.0 was used for the analysis and the following method such as mean, correlation, t-test, hierarchical regression were applied. The results indicate that first, according to the correlation analysis and crosstab analysis, satisfaction and desire were perceived as two different concepts. Second, using the hierarchical regression analysis to compare the effects of determinants of consumer satisfaction, the model of desire, expectation, performance, desires congruency, expectations congruency best explain the clothing satisfaction. Among them, effects of performance had the strongest impact. Expectation did not influence satisfaction but desire did.

  • PDF

영아의 기질과 교사의 놀이 관련 특성이 2세반 영아의 상상놀이에미치는 영향 (Effects of Toddler Temperament and Teacher's Play-Related Characteristics on Imaginative Play in Two-Year-Old Classrooms)

  • 유애형;신나리
    • 한국보육지원학회지
    • /
    • 제20권2호
    • /
    • pp.83-103
    • /
    • 2024
  • Objective: This study aimed to investigate the effects of children's characteristics and childcare teachers' attributes on the frequency and level of imaginative play in two-year-old classrooms. Methods: The study involved 191 toddlers, their mothers, and 32 teachers from childcare centers. Toddler characteristics encompassed temperament along with demographic variables such as gender and age. Teacher' attributes related to play included playfulness, play-support belief, and interactions with toddlers. Data analysis was conducted using SPSS 22.0 and HLM 8.2 software, employing basic analysis, hierarchical linear analysis, and hierarchical regression analysis. Results: First, as toddlers' age increased, both the frequency and level of their imaginative play increased. Second, individual-level model analysis revealed a positive effect of toddlers' extroversion on the level of imaginative play. Third, the class-level model results indicated that teachers' emotions had a negative effect, whereas their encouragement positively influenced the level of imaginative play. Conclusion/Implications: The significance of this study lies in its utilization of a multilayered model analysis, which offers a more robust examination of variable influences by accounting for hierarchical data structures.

HisCoM-GGI: Software for Hierarchical Structural Component Analysis of Gene-Gene Interactions

  • Choi, Sungkyoung;Lee, Sungyoung;Park, Taesung
    • Genomics & Informatics
    • /
    • 제16권4호
    • /
    • pp.38.1-38.3
    • /
    • 2018
  • Gene-gene interaction (GGI) analysis is known to play an important role in explaining missing heritability. Many previous studies have already proposed software to analyze GGI, but most methods focus on a binary phenotype in a case-control design. In this study, we developed "Hierarchical structural CoMponent analysis of Gene-Gene Interactions" (HisCoM-GGI) software for GGI analysis with a continuous phenotype. The HisCoM-GGI method considers hierarchical structural relationships between genes and single nucleotide polymorphisms (SNPs), enabling both gene-level and SNP-level interaction analysis in a single model. Furthermore, this software accepts various types of genomic data and supports data management and multithreading to improve the efficiency of genome-wide association study data analysis. We expect that HisCoM-GGI software will provide advanced accessibility to researchers in genetic interaction studies and a more effective way to understand biological mechanisms of complex diseases.