• Title/Summary/Keyword: Hierarchical element

Search Result 184, Processing Time 0.022 seconds

Effects of Instant Noodle (Ramyun)'s Selection Attribution upon Satisfaction - Focus on Children and Adolescents - (시판 라면류의 선택 속성이 만족도에 미치는 영향에 관한 연구 - 어린이 및 청소년을 중심으로 -)

  • Jung, Hyo-Sun;Yoon, Hye-Hyun
    • Journal of the Korean Society of Food Culture
    • /
    • v.27 no.1
    • /
    • pp.49-56
    • /
    • 2012
  • The purpose of this study was to understand the influence of instant noodle's selection attribution on satisfaction and to empirically analyze whether or not grade (elementary schoolchildren, middle school students, high school students) plays a moderating role in the relationship between selection attribution and satisfaction. Further, this study examined the differences in demographic characteristics among two groups of subjects divided by instant noodle's selection attribution. Based on a total of 1021 samples, this study verified a total of 3 hypotheses using the SPSS program. Data were analyzed by frequency analysis, chi-square, t-test, factor analysis, reliability analysis, cluster analysis, discriminant analysis, and hierarchical regression analysis. Results of the study were as follows. There were three different instant noodle's selection attributions among the children and adolescents investigated: internal element, external element, and company reliability. The multiple regression results show that internal element (=.391), external element (=.239), and company reliability (=.063) among customers' selection attributions had significant positive effects on satisfaction. In addition, the effect of selection attribution upon satisfaction was partially moderated according to grade. Further, cluster analysis divided subjects into two groups according to instant noodle's selection attribution: high-selection group vs. low-selection group. The wo groups of subjects classified by instant noodle's selection attribution were also different from each other in demographic characteristics. Limitations and future research directions are also discussed.

Numerical simulation of the femur fracture under static loading

  • El Sallah, Zagane Mohammed;Smail, Benbarek;Abderahmane, Sahli;Bouiadjra, B. Bachir;Boualem, Serier
    • Structural Engineering and Mechanics
    • /
    • v.60 no.3
    • /
    • pp.405-412
    • /
    • 2016
  • Bone is a living material with a complex hierarchical structure that gives it remarkable mechanical properties. Bone constantly undergoes mechanical. Its quality and resistance to fracture is constantly changing over time through the process of bone remodeling. Numerical modeling allows the study of the bone mechanical behavior and the prediction of different trauma caused by accidents without expose humans to real tests. The aim of this work is the modeling of the femur fracture under static solicitation to create a numerical model to simulate this element fracture. This modeling will contribute to improve the design of the indoor environment to be better safe for the passengers' transportation means. Results show that vertical loading leads to the femur neck fracture and horizontal loading leads to the fracture of the femur diaphysis. The isotropic consideration of the bone leads to bone fracture by crack propagation but the orthotropic consideration leads to the fragmentation of the bone.

Nonlinear Analysis of Skew Plates by $C^{\circ}$-Hierarchical Plate Element ($C^{\circ}$-계층적 평판요소에 의한 경사평판의 비선형 해석)

  • 우광성;허철구;박진환
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.1
    • /
    • pp.65-76
    • /
    • 2001
  • 본 연구의 목적은 평판의 모서리 둔각이 135도까지를 갖는 재료적 비선형 경사평판을 해석하기 위해 C°-계층적 평판요소를 개발하는 것이다. 기하학적 변환을 통해 경사진 경계조건은 직각좌표계의 좌표변환을 이용하여 해결할 수 있다. 여기서, 경사경계는 경사진 변 전체 또는 경사교량의 교좌위치와 관련된 몇 개의 선택지점만을 고려할 수 있게 하였다. 이 목적을 위해 경사교량의 교좌장치의 이동방향을 설명할 수 있도록 1차 전단변형을 갖는 Reissner/Mindlin 평판이론에 기초를 둔 5-자유도 경사평판요소가 정식화되었다. 한편, 평판의 극한내하력을 추정하기 위해 von-Mises 항복기준에 기초를 둔 소성유동법칙을 갖는 증분소성이론이 채택되었다. 또한, ADINA 소프트웨어에 의한 h-version 모델과 제안된 p-version 모델을 사용하여 경사각, 경계조건과 하중의 변화에 따른 영향을 조사하였다. 해석결과는 이론값과 문헌에 보고된 수치해석값과 비교되었다. 자유도 수에 따른 정확도를 비교기준으로 한다면, 본 연구에서 제안된 해석모델은 지금까지 개발된 가장 효율적 도구의 하나라고 할 수 있다.

  • PDF

A Study on Development of SGML Repository System Based on DTD-dependent Schema (DTD 의존 스키마에 기반한 SGML 문서 저장 시스템 개발에 관한 연구)

  • Kim, Hyeon-Gi;No, Dae-Sik;Gang, Hyeon-Gyu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.5
    • /
    • pp.1153-1165
    • /
    • 1999
  • In various fields of information technology, it is growing up the needs about dynamic content management systems to store and manage SGML(Standard Generalized Markup language) documents in a database system. In this paper, we consider the issue of storing SGML documents that having complex hierarchical structure into a database system, and then propose a data model based on ODMG(Object Database Management Group) object model in order to store SGML documents without loss of information. Because the proposed data model reflects physical element structure and logical entity structure of SGML documents, it is able to store the SGML document in a database system at the system at the element- level granularity without any information loss. And also the proposed data model can be adapted among ODMG-compliant object database management systems. Finally, we will discuss on the implementation details of SGML repository system supports the functionality of automatic database schema creation for any DTD(Document Type Definition0, the functionality of storing the SGML document, the functionality of dynamic document assembly from stored database objects to SGML document, and the functionality of indexing and searching for database objects.

  • PDF

Capabilities of 1D CUF-based models to analyse metallic/composite rotors

  • Filippi, Matteo;Carrera, Erasmo
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.1
    • /
    • pp.1-14
    • /
    • 2016
  • The Carrera Unified Formulation (CUF) is here extended to perform free-vibrational analyses of rotating structures. CUF is a hierarchical formulation, which enables one to obtain refined structural theories by writing the unknown displacement variables using generic functions of the cross-section coordinates (x, z). In this work, Taylor-like expansions are used. The increase of the theory order leads to three-dimensional solutions while, the classical beam models can be obtained as particular cases of the linear theory. The Finite Element technique is used to solve the weak form of the three-dimensional differential equations of motion in terms of "fundamental nuclei", whose forms do not depend on the adopted approximation. Including both gyroscopic and stiffening contributions, structures rotating about either transversal or longitudinal axis can be considered. In particular, the dynamic characteristics of thin-walled cylinders and composite blades are investigated to predict the frequency variations with the rotational speed. The results reveal that the present one-dimensional approach combines a significant accuracy with a very low computational cost compared with 2D and 3D solutions. The advantages are especially evident when deformable and composite structures are analyzed.

Free vibration analysis of damaged beams via refined models

  • Petrolo, Marco;Carrera, Erasmo;Alawami, Ali Saeghier Ali Saeed
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.1
    • /
    • pp.95-112
    • /
    • 2016
  • This paper presents the free vibration analysis of damaged beams by means of 1D (beam) advanced finite element models. The present 1D formulation stems from the Carrera Unified Formulation (CUF), and it leads to a Component-Wise (CW) modelling. By means of the CUF, any order 2D and 1D structural models can be developed in a unified and hierarchical manner, and they provide extremely accurate results with very low computational costs. The computational cost reduction in terms of total amount of DOFs ranges from 10 to 100 times less than shell and solid models, respectively. The CW provides a detailed physical description of the real structure since each component can be modelled with its material characteristics, that is, no homogenization techniques are required. Furthermore, although 1D models are exploited, the problem unknown variables can be placed on the physical surfaces of the real 3D model. No artificial surfaces or lines have to be defined to build the structural model. Global and local damages are introduced by decreasing the stiffness properties of the material in the damaged regions. The results show that the proposed 1D models can deal with damaged structures as accurately as a shell or a solid model, but with far lower computational costs. Furthermore, it is shown how the presence of damages can lead to shell-like modal shapes and torsional/bending coupling.

Nonlinear bending analysis of functionally graded CNT-reinforced composite plates

  • Cho, Jin-Rae
    • Steel and Composite Structures
    • /
    • v.42 no.1
    • /
    • pp.23-32
    • /
    • 2022
  • In this paper, a nonlinear numerical method to solve the large deflection problem is introduced. And the non-dimensional load-deflection behavior of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) plates is parametrically investigated. The large deflection problem is formulated according to the von Kármán nonlinear theory and the (1,1,0)* hierarchical model, and it is approximated by 2-D natural element method (NEM). The shear locking phenomenon is suppressed by the selectively reduced integration method. The nonlinear matrix equations are solved by combining the incremental loading scheme and the Newton-Raphson iteration method. The proposed method is validated from the benchmark experiments, where the propose method shows an excellent agreement with the reference methods. The nonlinear behavior of FG-CNTRC plates is evaluated in terms of the non-dimensional load-deflection curve, and it is parametrically investigated with respect to the existence/non-existence and gradient pattern of CNTs, the width-to-thickness and aspect ratios of plates and the type of boundary conditions. The non-dimensional central deflection is significantly reduced when CNTs and added, and it decreases with the volume fraction of CNTs. But, it shows a uniform increase in proportion to the width-to-thickness and aspect ratios. Both the gradient pattern of CNTs and the type of boundary conditions do also show the remarkable effects.

Single Level Adaptive hp-Refinement using Integrals of Legendre Shape Function (적분형 르장드르 형상함수를 이용한 단일 수준 적응적 hp-체눈 세분화)

  • Jo, Jun-Hyung;Yoo, Hyo-Jin;Woo, Kwang-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.3
    • /
    • pp.331-340
    • /
    • 2010
  • The basic theory and application of new adaptive finite element algorithm have been proposed in this study including the adaptive hp-refinement strategy, and the effective method for constructing hp-approximation. The hp-adaptive finite element concept needs the integrals of Legendre shape function, nonuniform p-distribution, and suitable constraint of continuity in conjunction with irregular node connection. The continuity of hp-adaptive mesh is an important problem at the common boundary of element interface. To solve this problem, the constraint of continuity has been enforced at the common boundary using the connectivity mapping matrix. The effective method for constructing of the proposed algorithm has been developed by using hierarchical nature of the integrals of Legendre shape function. To verify the proposed algorithm, the problem of simple cantilever beam has been solved by the conventional h-refinement and p-refinement as well as the proposed hp-refinement. The result obtained by hp-refinement approach shows more rapid convergence rate than those by h-refinement and p-refinement schemes. It it noted that the proposed algorithm may be implemented efficiently in practice.

The Effects of Management Traffic on the Local Call Processing Performance of ATM Switches Using Queue Network Models and Jackson's Theorem

  • Heo, Dong-Hyun;Chung, Sang-Wook;Lee, Gil-Haeng
    • ETRI Journal
    • /
    • v.25 no.1
    • /
    • pp.34-40
    • /
    • 2003
  • This paper considers a TMN-based management system for the management of public ATM switching networks using a four-level hierarchical structure consisting of one network management system, several element management systems, and several agent-ATM switch pairs. Using Jackson's queuing model, we analyze the effects of one TMN command on the performance of the component ATM switch in processing local calls. The TMN command considered is the permanent virtual call connection. We analyze four performance measures of ATM switches- utilization, mean queue length and mean waiting time for the processor directly interfacing with the subscriber lines and trunks, and the call setup delay of the ATM switch- and compare the results with those from Jackson's queuing model.

J-integral Analysis by P-version Crack Model (P-version 균열모델에 의한 J-적분해석)

  • 이채규;우광성;윤영필
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.38-45
    • /
    • 1994
  • P-version finite element model for the computation of stress intensity factors in two dimensional cracked panels by J-integral method is presented. The proposed model is based on high order theory and hierarchical shape function. The displacements fields are defined by integrals of Legendre polynomials which can be classified into three part such as basic mode, side mode, integral mode. The stress intensity factors are computed by J-integral method. The example models for validating the proposed p-version model are centrally cracked panel, single and double edged crack in a rectangular panel under pure Mode I. And the analysis results are compared with those by the h-version of FEM and empirical solutions in literatures. Very good agreement with the existing solution are shown.

  • PDF