
34   Dong-Hyun Heo et al. ETRI Journal, Volume 25, Number 1, February 2003 

This paper considers a TMN-based management system 
for the management of public ATM switching networks 
using a four-level hierarchical structure consisting of one 
network management system, several element 
management systems, and several agent-ATM switch pairs. 
Using Jackson’s queuing model, we analyze the effects of 
one TMN command on the performance of the component 
ATM switch in processing local calls. The TMN command 
considered is the permanent virtual call connection. We 
analyze four performance measures of ATM switches— 
utilization, mean queue length and mean waiting time for 
the processor directly interfacing with the subscriber lines 
and trunks, and the call setup delay of the ATM switch— 
and compare the results with those from Jackson’s 
queuing model. 
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I. INTRODUCTION 

With the advent of ATM switching, there seems to be a 
convergence of the paradigms of the data communications 
and telecommunications industries; the latter have always 
emphasized management features. The efficient operation of 
ATM networks requires the management and control of ATM 
switches [1]-[3]; public ATM networks have additional 
management requirements [2], [4], [5]. The Telecommuni-
cations Management Network (TMN) is capable of 
managing all types of telecommunication networks and 
equipment as well as services [6], [7]. A TMN-based 
management system for management and control of ATM 
switch networks is composed of managers and agents that are 
connected to each other by the Q3 interface [8], [9]. An ATM 
switch control module performs functions related to call 
processing, charging, and maintenance. These functions are 
usually carried out by exchanging messages between the 
processors. 

Hwang et al. proposed five models, each with an element 
management system (EMS) and subordinate agents and 
compared the TMN agent message processing time among 
them [10]. Another study analyzed the capability of an ATM 
switch to process local calls by examining the performance of 
the processors in the areas of call processing, charging, and 
maintenance [11]. These papers analyzed either (1) the 
performance of the ATM switch in processing local calls 
without considering the effects of the TMN-based management 
system that sends management and control commands to the 
ATM switch [12], or (2) the performance of the TMN-based 
management system itself [13]. 
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Fig. 1. Queuing network model. 

 
In this paper, using Jackson’s network model, we analyze 

the effects of TMN-based management functions on the local 
call processing performance of ATM switch. The TMN-based 
management system and the ATM switches considered in this 
paper were developed by the Electronics and Telecommuni-
cations Research Institute (ETRI) [3], [10], [11], [14]. The 
TMN-based management system of ETRI uses the Q3 
interface between the TMN manager and agent and has 
implemented Q.811 and Q.812 Recommendations [10], [13]. 
The agent, connected to the ATM switch via a local interface 
and acting as a q adaptor function (QAF), parses common 
management information protocol (CMIP) messages, 
translates them into the human-machine interface (HMI) and 
sends them to the ATM switch. The information models for 
components of the ATM switch are based on the I.751, 
M.3100, and X.72x series [3], [9], [15]. The TMN-based 
management command that we consider governs the 
processing-intensive tasks of the permanent virtual connection 
(PVC). We analyze four ATM switch performance measures: 
utilization, mean queue length and mean waiting time for the 
processor to directly interface with the subscriber lines, and 
the call setup delay of the ATM switch. We compare our 
simulation results with the results from Jackson’s queuing 
model. 

 
II. THE QUEUING NETWORK MODEL 

Jackson’s theorem is widely used for analyzing open 
networks. It shows that even large networks of M/M/m queues 
can be solved relatively simply by multiplying the results for 
each queue [16]-[19]. 

Figure 1 shows a queuing network of the ATM switches 
managed by the TMN-based management system. The 
dotted lines represent the flow of messages generated by a 
PVC command from the TMN-based management system, 
and the solid lines represent the flow of messages by a local 
call from a subscriber line. The figures on the lines are the 
number of messages generated per PVC command or local 
call. The call connection control processors (CCCPs) 
perform the call connection and control functions by 
exchanging messages from and to N basic-rate subscriber 
interface hardware blocks (BSIHs). Messages are exchanged 
among M CCCPs and an operation and maintenance 
processor (OMP) via the interconnected switching network 
module (ISNM). We consider the PVC command as 
representative because it requires more capacity of the 
CCCP than other traffic commands affecting the local call 
capability of CCCPs. 
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Table 1. Arrival rates of queues. 
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III. A NUMERICAL ANALYSIS 

Here we make a numerical analysis of the effects of PVCλ  
on the CCCPis utilization, mean queue length and mean waiting 
time, and call setup delay. We assume that (1) Ki BSIHs for each 
ATM local switching subsystem (ALSi) are allocated to 
processing the PVC calls, (2) the local calls from the basic-rate 
subscribers are distributed uniformly among the remaining 
BSIHs, and (3) local calls and PVC commands are generated in 
a Poisson distribution [10], [13], [20]. The first column of Table 
1 shows the arrival rates of queues when an ATM switch is used 
for processing local calls only. For an ATM switch processing 
both local calls and PVC commands, the arrival rates of queues 
are listed in the last column of Table 1. Following Jackson’s 

theorem on queuing networks, ∑
≠=

+=
l

jii
iijjj ra

,1

λλ , where 

Li ,,1L= , the arrival rate of queue j  is equal to the sum of 
the arrivals ja , and from outside the system the arrivals 

iijr λ from queue i  to queue j  and ijr  is the routing 
probability from queue i  to queue j . 

Take 
iCCCPQ  as an example of a local call only. The arrival 

rate from outside the system to 
iCCCPQ  is none, 0=ja , and 

the arrivals from queue 
iASNMQ  to 

iCCCPQ are 
iASNMλ

39
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39
20 ). 

Based on a message processing analysis of the queues [20]-

[22], we further assume that (4) the mean processing time of 
each of the queues of BSIHIij, BSIHOij, ASNMi, and ISNM is 
linearly proportional to the length of the message to be 
processed and (5) their processing times follow an independent 
exponential behavior with their mean processing time [11]. 
The np is the probability that a message is composed of n cells, 
and d represents the processing time per cell. The last two 
columns of Table 1 show the service rates calculated under the 
assumed distributions of np  and the values of d [21]. Thus, 
the mean time required to process a message with a length of 
n cells may increase linearly as n  does, that is,∑n nndp  
[21]. We assume the service rates of queues CCCPi and 
OMP are 1000 messages per second [11], the messages 
queued are processed according to the FIFO rule, and their 
processing times follow an independent exponential 
behavior [20], [21]. 

Under the above assumptions, formulas for the utilization of 
CCCPi, mean queue length and mean waiting time of CCCPi, 
and call setup delay can be easily calculated using Jackson’s 
theorem [16], [17] as follows: 

• The utilization of CCCPi 

i

i

i
CCCP

CCCP
CCCP µ

λ
ρ =  

• The mean queue length of CCCPi 
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Table 2. Service rates of 
ijBSIHIQ ,

ijBSIHOQ ,
iASNMQ , and ISNMQ . 
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Fig. 2. Effect on CCCP utilization (
iCCCPρ ). 
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Fig. 3. Effect on mean queue length (
iCCCPL ). 
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• The call setup delay 

OMPCCCP WWD
i

+⋅= 11 , 

where kW is the mean waiting time of queue k. 
Eleven messages are processed at the CCCPi and one at the 

OMP during the call setup [11], [22]. For Figs. 2 to 5, we 
assume that an ATM switch processes both local and PVC calls 
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Fig. 4. Effect on mean waiting time (
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Fig. 5. Effect on call setup delay (D). 
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and one ALS has 15 BSIHs, among which 14 BSIHs are 
allocated to local calls and one to both local and PVC calls; 
these figures show the ratios of ,

iCCCPρ  ,,
ii CCCPCCCP WL or 

D when processing both local and PVC calls to 
,,,

iii CCCPCCCPCCCP WLρ or D  when processing local calls 
only. We chose the values of 0.2 and 0.1 for localPVC λλ on 
the basis of the performance of the TMN agent processor [10], 
[13]. 

From these figures we can see that (1) the effect of PVCλ  on 
the four measures is considerable, (2) the effect of localλ  on 

iCCCPρ  is negligible, and (3) the effect of localλ  on other 
measures is substantial. As these figures showing the effect of 
PVC traffic reveal, carefully considering such effects is useful 

 

USER BISHij inner originating CCCPi OMP inner destinating CCCPi

active 

USER BISHij 

Fig. 6. Local call connection procedure.  
 

 Fig. 7. Point-to-point PVC procedure. 

USER BISHij inner originating CCCPi OMP inner destinating CCCPi USERBISHij
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in designing the TMN-based management system for ATM 
switches. 

For a comparison of ,,,
iii CCCPCCCPCCCP WLρ and D  from 

Jackson’s queuing model, we performed a Monte Carlo 
simulation using the AweSim tool, which is basically the 
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Table 3. Comparison of Jackson’s Theorem and Simulation Results. 

local calls only 
both local and PVC calls 
 ( 1.0=localPVC λλ ) 

both local and PVC calls 
 ( 2.0=localPVC λλ ) 

 
call 

arrivals 
( localλ ) numerical 

result 
simulation 
result 

numerical  
result 

simulation 
result 

numerical  
result 

simulation 
result 

34 0.68 0.67 0.717 0.713 0.755 0.756 

36 0.72 0.72 0.759 0.752 0.799 0.804 

38 0.76 0.76 0.802 0.792 0.844 0.847 

40 0.80 0.80 0.844 0.834 0.888 0.900 

42 0.84 0.83 0.886 0.881 0.9324 0.935 

44 0.88 0.88 0.928 0.928 0.9768 0.974 

Utilization 
(

iCCCPρ ) 

46 0.92 0.92 0.9706 0.964 Case for which 1≥
iCCCPρ  

34 1.445 1.387 1.821 1.650 2.324 2.399 

36 1.851 1.850 2.400 2.284 3.181 3.254 

38 2.407 2.309 3.244 2.951 4.550 4.408 

40 3.200 3.260 4.566 4.231 7.041 7.670 

42 4.410 4.316 6.901 6.424 12.861 15.051 

44 6.453 6.727 12.038 13.201 41.126 38.336 

Queue 
Length 
(

iCCCPL ) 

46 10.580 9.849 32.043 28.979 Case for which 1≥
iCCCPρ  

34 0.002 0.002 0.003 0.002 0.003 0.003 

36 0.003 0.003 0.003 0.003 0.004 0.004 

38 0.003 0.003 0.004 0.004 0.005 0.005 

40 0.004 0.004 0.006 0.005 0.008 0.009 

42 0.005 0.005 0.008 0.007 0.014 0.016 

44 0.007 0.008 0.013 0.013 0.0421 0.039 

Waiting 
time 
(

iCCCPW ) 

46 0.012 0.011 0.033 0.030 Case for which 1≥
iCCCPρ  

34 0.034 0.034 0.035 0.034 0.041 0.045 

36 0.045 0.045 0.042 0.045 0.050 0.056 

38 0.045 0.045 0.050 0.056 0.064 0.067 

40 0.056 0.056 0.064 0.067 0.089 0.111 

42 0.067 0.067 0.088 0.089 0.148 0.189 

44 0.089 0.100 0.140 0.143 0.431 0.451 

Delay 
( D ) 

46 0.144 0.133 0.340 0.342 Case for which 1≥
iCCCPρ  

 

 
SLAM II simulation package incorporating the visualization-
modeling interface [23], [24]. Figures 6 and 7 depict the 
simulated sequences of messages for local calls [11], 
[14] and PVC commands, respectively, generated on the 
basis of Q.2931 Recommendation [25] and ETRI 
implementations. 

Table 3 reveals that for local calls only and both local and 
PVC calls, Jackson’s network and our simulation have 
comparable results. 

IV. CONCLUSION 

This paper has analyzed the effects of TMN-based 
management traffic on the performance of local call processing 
by ATM switches using Jackson’s theorem. The analysis of the 
effects of PVCλ  on CCCP utilization, mean queue length and 
mean waiting time, and call setup delay demonstrates that the 
effects of PVC commands on the performance of local call 
processing by ATM switches are significant and deserve to be 
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taken into consideration. Our small-scale simulation shows that 
the results of Jackson’s queuing model are useful for network 
design and analysis. 

The number of ATM switches to be managed by TMN-
based management systems should be determined by 
considering both the assumed local call and PVC command 
traffic. Non-Poisson PVC traffic and the pattern of the various 
incoming data rates will be simulated in a future research 
project. 
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