• Title/Summary/Keyword: Hierarchical behavior knowledge network

Search Result 3, Processing Time 0.018 seconds

Interactive Human Intention Reading by Learning Hierarchical Behavior Knowledge Networks for Human-Robot Interaction

  • Han, Ji-Hyeong;Choi, Seung-Hwan;Kim, Jong-Hwan
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1229-1239
    • /
    • 2016
  • For efficient interaction between humans and robots, robots should be able to understand the meaning and intention of human behaviors as well as recognize them. This paper proposes an interactive human intention reading method in which a robot develops its own knowledge about the human intention for an object. A robot needs to understand different human behavior structures for different objects. To this end, this paper proposes a hierarchical behavior knowledge network that consists of behavior nodes and directional edges between them. In addition, a human intention reading algorithm that incorporates reinforcement learning is proposed to interactively learn the hierarchical behavior knowledge networks based on context information and human feedback through human behaviors. The effectiveness of the proposed method is demonstrated through play-based experiments between a human and a virtual teddy bear robot with two virtual objects. Experiments with multiple participants are also conducted.

A Study on Real time Multiple Fault Diagnosis Control Methods (실시간 다중고장진단 제어기법에 관한 연구)

  • 배용환;배태용;이석희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.457-462
    • /
    • 1995
  • This paper describes diagnosis strategy of the Flexible Multiple Fault Diagnosis Module for forecasting faults in system and deciding current machine state form sensor information. Most studydeal with diagnosis control stategy about single fault in a system, this studies deal with multiple fault diagnosis. This strategy is consist of diagnosis control module such as backward tracking expert system shell, various neural network, numerical model to predict machine state and communication module for information exchange and cooperate between each model. This models are used to describe structure, function and behavior of subsystem, complex component and total system. Hierarchical structure is very efficient to represent structural, functional and behavioral knowledge. FT(Fault Tree). ST(Symptom Tree), FCD(Fault Consequence Diagrapy), SGM(State Graph Model) and FFM(Functional Flow Model) are used to represent hierachical structure. In this study, IA(Intelligent Agent) concept is introduced to match FT component and event symbol in diagnosed system and to transfer message between each event process. Proposed diagnosis control module is made of IPC(Inter Process Communication) method under UNIX operating system.

  • PDF

Context-based Social Network Configuration Method between Users (컨텍스트 기반 사용자 간 소셜 네트워크 구성 방법)

  • Han, Jong-Hyun;Woo, Woon-Tack
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.11-14
    • /
    • 2009
  • In this paper, we propose the method configuring social networks among users based on users' context and profile. Recently, many researchers are concerned about social networks related with collaborative systems. In case of the existing researches, however, it is difficult to configure social networks dynamically because they are based on static data types, such as log and profile of users. The proposed method uses not only user profiles but also context reflecting users' behavior dynamically. It computes the similarity among users' behavior contexts using hierarchical structure of context domain knowledge model. And it calculates relationships between contexts by given weight factors of category of context model. In order to verify usefulness of the method, we conduct an experiment on configuring social network according to change of user context. We expect that it makes dynamic analysis of relationship of users possible.

  • PDF