A secret sharing scheme is a cryptographic Protocol that a dealer distributes shares about a secret to many participants and authorized subsets of the participants can reconstruct the secret. Secret sharing schemes that reflect various access structure were proposed. We propose a new reusable secret sharing scheme in a hierarchical group. Participants have priority about restoration of secret from high position level of tree. And when participants who belong in high position level are absent, they can delegate restoration competence of the secret transmitting delegation ticket to child nodes that it belongs in low rank level. By participants reuse own share and take part in different secret restoration, they who belong on hierarchical group can be possible different secret restoration by each participant's single share.
The Transactions of the Korea Information Processing Society
/
v.13
no.2
/
pp.34-40
/
2024
Secret sharing is a cryptographic technique that involves dividing a secret or a piece of sensitive information into multiple shares or parts, which can significantly increase the confidentiality of a secret. There has been a lot of research on secret sharing for different contexts or situations. Tassa's conjunctive secret sharing method employs polynomial derivatives to facilitate hierarchical secret sharing. However, the use of derivatives introduces several limitations in hierarchical secret sharing. Firstly, only a single group of participants can be created at each level due to the shares being generated from a sole derivative. Secondly, the method can only reconstruct a secret through conjunction, thereby restricting the specification of arbitrary secret reconstruction conditions. Thirdly, Birkhoff interpolation is required, adding complexity compared to the more accessible Lagrange interpolation used in polynomial-based secret sharing. This paper introduces the multi-compartment secret sharing method as a generalization of the conjunctive hierarchical secret sharing. Our proposed method first encrypts a secret using external groups' shares and then generates internal shares for each group by embedding the encrypted secret value in a polynomial. While the polynomial can be reconstructed with the internal shares, the polynomial just provides the encrypted secret, requiring external shares for decryption. This approach enables the creation of multiple participant groups at a single level. It supports the implementation of arbitrary secret reconstruction conditions, as well as conjunction. Furthermore, the use of polynomials allows the application of Lagrange interpolation.
A secret sharing scheme is a kind of cryptographic protocol to maintain secret information by splitting it to many small pieces of shares and sharing between shareholders. In case of shareholders having different authorization to reconstruct the original secret, it is required a new secret sharing scheme to reflect any hierarchical structure between shareholders. In this paper, we propose a new weighted secret sharing scheme, that is, each shareholder has a weight according to the authorization of reconstructing the secret and an access set which is a subset of shareholders can reconstruct the secret if the sum of weights is equal or greater than a predefined threshold.
A secret sharing scheme is a cryptographic protocol to share a secret among a set of participants P in the way that only qualified subsets of P can reconstruct the secret whereas any other subset of P, non-qualified to know the secret, cannot determine anything about the secret. In this paper, we propose a new secret sharing scheme in hierarchical groups, whose hierarchy can be represented as a tree structure. In the tree structure, participants of higher levels have priorities to reconstruct the secret over participants of lower levels. In the absence of the participant of a higher level, it is possible for this participant to delegate the ability to reconstruct the secret to the child nodes of the next lower level through the transfer of his delegation ticket. This scheme has a dynamic access structure through the recursive delegation process from the root to lower levels where participants aren't absent.
Proxy signatures is a signature scheme that an original signer delegates one's signature capability to a proxy signer, and then the proxy signer creates a signature on behalf of the original signer. Delegation of authority is a common practice in the real world, in particular, it happens naturally in hierarchical groups such as company, bank and army, etc. In this paper, we propose a new dynamic multi-proxy signature scheme allowing repetitive delegations in a hierarchical group. We adopt multi-proxy signatures to enhance the security of proxy signature. In multi-proxy signatures, plural proxy signers can generate a valid proxy signature collectively on behalf of one original signer. In our scheme, the proxy group is not fixed but constructed dynamically according to some situations. Delegations are processed from higher level to lower level in the hierarchy using delegation tickets. When the original signer wants to delegate one's signature authority, the original signer generates a delegation ticket based on secret sharing and Diffie-Hellman problems. The delegation ticket is shared among proxy signers and then all the proxy signers can generate a valid proxy signature collectively by reconstructing the original signer's delegation ticket. If a certain proxy signer can not attend the proxy signature generating protocol, the proxy signer can also delegate repetitively his partial signature authority to the lower level participants, and then the proxies are constructed dynamically.
Proceedings of the Korean Information Science Society Conference
/
2002.10c
/
pp.544-546
/
2002
비밀분산법이란 하나의 비밀정보(secret)를 분산시켜 다수의 참가자에게 공유시키고, 필요시 허가된 참가자 부분집합만이 비밀정보를 복원할 수 있는 암호 프로토콜이다. 다양한 접근구조를 반영하는 비밀분산법이 제안되었는데 본 논문에서는 계층구조에 적용이 가능하면서 재사용이 가능한 새로운 비밀분산법을 제안한다. 즉, 참가자들은 트리 상의 상위 레벨부터 비밀정보의 복원에 대한 우선권을 갖고, 상위 레벨에 속하는 참가자들이 부재 시에는 하위 레벨에 속하는 자식 노드들에게 위임티켓(delegation ticket)을 전송하여 비밀정보의 복원 권한을 위임할 수 있고, 각 참가자가 하나의 비밀조각으로 서로 다른 비밀정보를 복원하는데 참여할 수 있도록 함으로써, 계층그룹에서 비밀조각의 재사용이 가능하도록 한다.
The MANET has many problems in security despite of its many advantages such as supporting the mobility of nodes, independence of the fixed infrastructure, and quick network establishment. In particular, in establishing security, the traditional certification service has many difficult problems in applying to the MANET because of its safety, expandability, and availability. In this paper, a secure and effective distributed certification service method was proposed using the Secret Sharing scheme and the Threshold Digital Signature scheme in providing certification services in the MANET. In the proposed distributed certification service, certain nodes of relatively high safety among the mobile nodes consisting of the MANET, were set as privileged nodes, from which the process of issuing a certification started. The proposed scheme solved problem that the whole network security would be damaged by the intrusion to one node in the Centralized Architecture and the Hierarchical Architecture. And it decreased the risk of the exposure of the personal keys also in the Fully Distributed Architecture as the number of the nodes containing the partial confidential information of personal keys decreased. By the network simulation, the features and availability of the proposed scheme was evaluated and the relation between the system parameters was analyzed.
The secret sharing is the basic concept of the threshold cryptosystem and has an important position in the modern cryptography. At 1995, Jarecki proposed the proactive secret sharing to be a solution of existing the mobile adversary and also proposed the share renewal scheme for (k, n) threshold scheme. For n participants in the protocol, his method needs O($n^2$) modular exponentiation per one participant. It is very high computational cost and is not fit for the scalable cryptosystem. In this paper, we propose the efficient share renewal scheme that need only O(n) modular exponentiation per participant. And we prove our scheme is secure if less that ${\frac}\frac{1}{2}n-1$ adversaries exist and they static adversary.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.