• Title/Summary/Keyword: Hierarchical Handoff

Search Result 54, Processing Time 0.194 seconds

Mobility Management Algorithm with Reduced Wireless Signaling Cost in the Wireless Internet (무선 인터넷에서 무선 시그널링 양을 줄이기 위한 이동성 관리 알고리듬)

  • Kim, Tae-Hyoun;Lee, Jai-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2B
    • /
    • pp.27-35
    • /
    • 2005
  • As the number of Mobile IP users is expected to grow, the signaling overhead associated with mobility management in the wireless Internet is bound to grow. And since the wireless link has far less bandwidth resources and limited scalability compared to the wired network link, the signaling overhead associated with mobility management has a severe effect on the wireless link. In this paper, we propose IP-Grouping algorithm that can greatly reduce the signaling cost in the wireless link as Access Routers(ARs) with a large rate of handoff are grouped into a Group Zone. Based on the numerical analysis and simulation, we show that the wireless signaling cost in the IP-Grouping is much lower than that of the Hierarchical Mobile IPv6 under various condition.

An Efficient Resource Reservation Schemes using PMRSVP in Wireless Mobile Networks (무선 이동 망에서 PMRSVP를 이용한 효율적인 자원 관리)

  • Han, Seung-Jin;Park, Yang-Jae;Rim, Kee-Wook;Lee, Jung-Hyun
    • The KIPS Transactions:PartC
    • /
    • v.10C no.3
    • /
    • pp.355-366
    • /
    • 2003
  • Today's market share of mobile internet service is growing rapidly in internet due to the rapid advances in wireless mobile networks. To guarantee for QoS of Mobile Nodes in wireless mobile networks, we propose the Proxy MRSVP (PMRSVP) which is efficient resource reservation protocol. The PMRSVP using a modified regional registration restrains excessive message generation from existing protocols that propose an alternative plan of existing best effort service in wireless mobile networks. We show that signaling message generation quantities and resource registration costs of the PMRSVP are lower than MRSVP and Hierarchical MRSVP (HMRSVP) because as Mobile Agent (MA) plays a proxy role instead of Corresponding Host (CH). We evaluate resource reservation cost with registration cost of intradomain and interdomain of the proposed method in the paper by comparing to that of the MRSVP and HMRSVP.

A Hierarchical Mobile W Architecture using a Virtual Router Layer (가상 라우터 계층을 이용한 Hierarchical Mobile IP 구조)

  • Shin Bok-Deok;Ha Kyung-Jae
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.5
    • /
    • pp.603-614
    • /
    • 2005
  • The wireless LAN environment using Mobile IP is constructed and managed to be connected with Ethernet based wired networks. However, there have been many problems with wireless networks using Mobile IP. Some important facts on network performance have not been considered when introducing wireless LAN by Mobile IP to wired networks. In this paper, we suggest schemes which can solve problems on Handover latency caused by the asymmetrical connectivity of the Access Router at applying the HMIPv6 and on binding updates due to the MN frequent movement. Our proposed schemes can reduce network latency by using the HMIPv6 architecture with a virtual router layer, and reduce communication overhead by interchanging information of the MN movement between routers. Our schemes are expected to assist in constructing a more real and effective wireless LAN environment based on the HMIPv6 and FMIP.

Route Optimization Scheme in Nested NEMO Environment based on Prefix Delegation (프리픽스 할당에 기반한 중첩된 NEMO 환경에서의 경로최적화 기법)

  • Rho, Kyung-Taeg;Kang, Jeong-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.5
    • /
    • pp.95-103
    • /
    • 2008
  • The Network Mobility (NEMO) basic support protocol extends the operation of Mobile IPv6 to provide uninterrupted Internet connectivity to the communicating nodes of mobile networks. The protocol is not efficient to offer delays in data delivery and higher overheads in the case of nested mobile networks because it uses fairly sub-optimal routing and multiple encapsulation of data packets. In this paper, our scheme combining Hierarchical Mobile IPv6 (HMIPv6) functionality and Hierarchical Prefix Delegation (HPD) protocol for IPv6, which provide more effective route optimization and reduce packet header overhead and the burden of location registration for handoff. The scheme also uses hierarchical mobile network prefix (HMNP) assignment and tree-based routing mechanism to allocate the location address of mobile network nodes (MNNs) and support micro-mobility and intra-domain data communication. The performance is evaluated using NS-2.

  • PDF

(Performance Analysis of Channel Allocation Schemes Allowing Multimedia Call Overflows in Hierarchical Cellular Systems) (계층셀 시스템 환경에서 멀티미디어 호의 오버플로우를 허용한 채널할당기법 성능분석)

  • 이상희;임재성
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.3
    • /
    • pp.316-328
    • /
    • 2003
  • In this paper, we propose and analyze two adaptive channel allocation schemes for supporting multimedia traffics in hierarchical cellular systems. It is guaranteed to satisfy the required quality of service of multimedia traffics according to their characteristics such as a mobile velocity for voice calls and a delay tolerance for multimedia calls. In the scheme 1, only slow-speed voice calls are allowed to overflow from macrocell to microcell and only adaptive multimedia calls can overflow from microcell to macrocell after reducing its bandwidth to the minimum channel bandwidth. In the scheme II, in addition to the first scheme, non-adaptive multimedia calls can occupy the required channel bandwidth through reducing the channel bandwidth of adaptive multimedia calls. The proposed scheme I is analyzed using 2-dimensional Markov model. Through computer simulations, the analysis model and the proposed schemes are compared with the fixed system and two previous studies. In the simulation result, it is shown that the proposed schemes yield a significant improvement in terms of the forced termination probability of handoff calls and the efficiency of channel usage.

Performance Analysis of Handoff Strategies for Guaranteeing QoS of Fast Moving Station in Hierarchical Cellular Systems (계층셀 시스템에서 고속 이동체의 QoS 보장을 위한 핸드오프 기법의 성능분석)

  • Lee, Sang-Hui;Im, Jae-Seong
    • Journal of KIISE:Information Networking
    • /
    • v.27 no.4
    • /
    • pp.453-464
    • /
    • 2000
  • 본 논문에서는 계층셀 시스템에서 이동단말의 속도에 따른 채널 할당 기법이 갖는 QoS 차이를 극복하기 위하여 두가지 핸드오프 우선 순위 기법을 제안한다. 첫 번째 기법은 매크로셀에 고속 핸드오프 호를 위한 전용채널을 할당하여 고속 단말의 핸드오프 강제 종료율을 낮추어 줌으로써 서로 다른 속도 그룹에 속한 단말들에게 동일한 서비스 품질을 유지할 수 있도록 한다. 두 번째 제안하는 기법에서는 시스템 내 트래픽 양의 증가시에 발생하는 핸드오프 호의 성능 저하를 방지하기 위하여 마이크로셀 경계에 핸드오프 호를 위한 큐를 도입한다. 시뮬레이션 결과 핸드오프 호 강제 종료율에 있어서 높은 성능 개선을 보이며 특히 저속 단말에 준하는 수준으로 고속 단말의 QoS를 보장하였다. 또한 오버플로우 대 테이크백 비율(the ratio of take-back to overflow)을 고려할 때 기존 방식에 비하여 제안하는 방식에서 보다 많은 호가 올바른 셀 계층에서 진행하게 되어 전체 시스템의 효율을 높이는 것을 확인하였다.

  • PDF

Call Admission Control Techniques of Mobile Communication System using SRN Models (SRN 모델을 이용한 이동통신 시스템의 호 수락 제어 기법)

  • 로철우
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.12
    • /
    • pp.529-538
    • /
    • 2002
  • Conventional method to reduce the handoff call blocking probability(PBH) in mobile communication system is to reserve a predetermined number of channels only for handoff calls. To determine the number of reserved channels, an optimization problem, which is generally computationally heavily involved, must be solved. In this Paper, we propose a call admission control (CAC) scheme that can be used to reduce the PBH without reserving channels in advance. For this, we define a new measure, gain, which depends on the state of the system upon the arrival of a new call. The proposed CAC decision rule relies on the gain computed when a new call arrives. SRN, an extended stochastic Petri nets, provides compact modeling facilities for system analysis can be calculated performance index by appropriate reward to the model. In this Paper, we develop SRN models which can perform the CAC with gain. The SRN models are 2 level hierarchical models. The upper layer models are the structure state model representing the CAC and channel allocation methods considering QoS with multimedia traffic The lower layer model Is to compute the gain under the state of the upper layer models.

A QoS Guaranteed Mechanism Using the FRSVP in the Hierarchical Mobile IPv6 (계층적 이동 IPv6 네트워크에서 FRSVP를 이용한 QoS 보증 방안)

  • Kim Bo-Gyun;Hong Choong-Seon;Lee Dae-Young
    • The KIPS Transactions:PartC
    • /
    • v.12C no.3 s.99
    • /
    • pp.419-428
    • /
    • 2005
  • This paper divides domains into the intra, inter domain according to the mobile node's movement and .proposes the Fast RSVP algorithm on the HMIPv6. It is done to advance reservation using L2 beacon signal when MN is located to overlapped cell area. In case of intra-region handoff, the advance reservation is reserved at the nearest common router and In case of inter-region handoff, it is done to advance reservation through the other site MAP's QA(QoS Agent) to the AR and optimize CN's path. Because of using the bandwidth efficiently and switching the data path quickly, the proposal algorithm minimizes the service disruption by data routing.

Performance analysis of the Resource Reservation Schemes using Mobile Cluster based H-MRSVP in Wireless Mobile Networks (무선 이동망에서 이동 클러스터 기반의 H-MRVP를 이용한 자원관리 기법의 성능 분석)

  • Ma, Gyeong-Min;Won, Jeong-Jae;Lee, Hyeong-U;Jo, Chung-Ho
    • The KIPS Transactions:PartC
    • /
    • v.9C no.2
    • /
    • pp.283-292
    • /
    • 2002
  • This paper develops a scheme of resource management for guaranteeing QoS of realtime traffic in wireless mobile internet environments Mobile terminal has significant impact on the QoS originating mobility provided to a real-time application. The currently proposed MRSVP is not clear the boundary of resource reservation tregion and also can give rise to signal overhead to maintain sessions. To solve above problem, we propose the new reservation protocol, mobile cluster based H-MRSVP to combine MRSVP with moving cluster concept. In this paper, we analytically design our model for guaranteeing the QoS of realtime traffic and compare the three schemes: guard channel allocation schemes, DCA and our model. The performance measures are the probabilities of new call blocking, handoff dropping, resource utilization and service completion versus the system offered Erlang load. Consequently, Simulation indicate our model is more flexible than DCA in a view pint of channel utilization and gains the advantage over guard channel scheme with respects to the mobility.

Robust Inter-MAP Binding Update Scheme in HMIPv6 (HMIPv6 네트워크에서 Robust 한 Inter-MAP 바인딩 업데이트 기법)

  • Jinwook Park;Jongpil Jeong;Hyunseung Choo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.1387-1390
    • /
    • 2008
  • In a wireless network, handover latency is very important in supporting user mobility with the required quality of service (QoS). In view of this many schemes have been developed which aim to reduce the handover latency. The Hierarchical Mobile IPv6 (HMIPv6) approach is one such scheme which reduces the high handover latency that arises when mobile nodes perform frequent handover in Mobile IPv6 wireless networks. Although HMIPv6 reduces handoff latency, failures in the mobility anchor point (MAP) results in severe disruption or total disconnection that can seriously affect user satisfaction in ongoing sessions between the mobile and its correspondent nodes. HMIPv6 can avoid this situation by using more than one mobility anchor point for each link. In [3], an improved Robust Hierarchical Mobile IPv6 (RH-MIPv6) scheme is presented which enhances the HMIPv6 method by providing a fault-tolerant mobile service using two different MAPs (Primary and Secondary). It has been shown that the RH-MIPv6 scheme can achieve approximately 60% faster recovery times compared with the standard HMIPv6 approach. However, if mobile nodes perform frequent handover in RH-MIPv6, these changes incur a high communication overhead which is configured by two local binding update units (LBUs) as to two MAPs. To reduce this communication overhead, a new cost-reduced binding update scheme is proposed here, which reduces the communication overhead compared to previous schemes, by using an increased number of MAP switches. Using this new proposed method, it is shown that there is a 19.6% performance improvement in terms of the total handover latency.