• Title/Summary/Keyword: Hierarchical Fuzzy Process

Search Result 58, Processing Time 0.023 seconds

A Study on the Fuzzy Evaluation Algorithm for Large Scale Hierarchical MADM Problem -Centering on the Identification of Fuzzy Measure- (대규모 다계층 MADM 문제의 퍼지평가 알고리즘에 관한 연구 - 퍼지측도의 동정을 중심으로 -)

  • Lim, B.T.;Yang, W.;Lee, C.Y.
    • Journal of Korean Port Research
    • /
    • v.12 no.1
    • /
    • pp.9-17
    • /
    • 1998
  • The evaluation structure of complex problems is composed of multi-attributes and hierarchy. A many studies were existed on this problems, but that based on the assumption that the evaluation elements were independent. The actual evaluation problems have the complexity, ambiguity and interlinkage among the elements. In this situation, the fuzzy evaluation process is very effective in settling the complex problems. For evaluation of large scale hierarchical MADM problem, the fuzzy evaluation algorithm is developed in this paper, and that is centering on the identification of fuzzy measures. In this study, we newly identified the weight and interaction among the evaluation attributes. The results of this study are as follows: we can identified the hierarchical structure of the evaluation problem which is composed of the evaluation structure, function and hierarchy; we improved the existed weighting method which could be accomplished by normalizing process, considering the uncertainty and new weight integrating method which come from Dempster-Shafer theory. And we take into account the interaction properties among more than 3 evaluation attributes, which can be compared with the existed studies in which only 2 evaluation attributes taked into account.

  • PDF

On the Evaluation Algrithm of Hierarchical Process using $\lambda$-Fuzzy Integral (퍼지 적분을 도입한 계증구조 평가 알고리즘)

  • 여기태;노홍승;이철영
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.2 no.1
    • /
    • pp.97-106
    • /
    • 1996
  • One of the main problems in evaluating complex objects, such as an ill-defined system, is how to treat ambiguous aspect of the evaluation. Due to the Complexity and ambiguity of the objects, many types of evaluation attributes should be identified based on the rational dsision. One of these attributes is an analytical hierarchy process (AHP). the weight of evaluation attribtes in AHP however comes from the probability measure based on the additivity. Therefore, it is notapplicable to the objects which have the property of non-additivity. In the previous studies by other researchers they intriduced the Hierarchical Fuzzy Integral method or mergd AHP and fuzzy measure for the analysis of the overlaps among the evaluation objects. But, they need more anlyses in terms of transformation of the probability measure into fuzzy measure which fits for the additivity and overlapping coefficient which affects to the fuzzy measure. Considering these matters, this paper deals that, ⅰ) clarifying the relation between the fuzzy and probability measure adopted in AHP, ii) calculating directly the family of fuzzy measure from the overlapping coefficient and probability measure. A simple algorithm for the calculation of fuzzy measures and set family of those from the above results is also proposed. Finally, the effectiveness of the algorithm developed by applying this to the problems for estimation of safety in ship berthing and for evaluation of ports in competition is verified. This implied that the new algoritnm gives better description of the system evaluation.

  • PDF

Optimization of Fuzzy Set Fuzzy Model by Means of Hierarchical Fair Competition-based Genetic Algorithm using UNDX operator (UNDX연산자를 이용한 계층적 공정 경쟁 유전자 알고리즘을 이용한 퍼지집합 퍼지 모델의 최적화)

  • Kim, Gil-Sung;Choi, Jeoung-Nae;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.204-206
    • /
    • 2007
  • In this study, we introduce the optimization method of fuzzy inference systems that is based on Hierarchical Fair Competition-based Parallel Genetic Algorithms (HFCGA) and information data granulation, The granulation is realized with the aid of the Hard C-means clustering and HFCGA is a kind of multi-populations of Parallel Genetic Algorithms (PGA), and it is used for structure optimization and parameter identification of fuzzy model. It concerns the fuzzy model-related parameters such as the number of input variables to be used, a collection of specific subset of input variables, the number of membership functions, the order of polynomial, and the apexes of the membership function. In the optimization process, two general optimization mechanisms are explored. The structural optimization is realized via HFCGA and HCM method whereas in case of the parametric optimization we proceed with a standard least square method as well as HFCGA method as well. A comparative analysis demonstrates that the proposed algorithm is superior to the conventional methods. Particularly, in parameter identification, we use the UNDX operator which uses multiple parents and generate offsprings around the geographic center off mass of these parents.

  • PDF

An Empirical Study of Selection of Cruise Terminals Location by Using HFP (계층퍼지분석법(HFP)을 이용한 크루즈 터미널 입지 선정에 관한 연구)

  • CHOI DO-SUEK;LEE SANG-HWA
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.4 s.65
    • /
    • pp.56-65
    • /
    • 2005
  • This study aims at selecting optimum locations for cruise terminal This study uses the HFP(Hierarchical Fuzzy Process) based on the fuzzy theory, which is known to be effective in evaluating a complicated system whose evaluation attribut are vague or overlapping with one another such as the elements in selecting cruise terminal location and in treating both qualitative and quantitative data.

Optimization of Fuzzy Set Fuzzy Model by Means of Hierarchical Fair Competition-based Parallel Genetic Algorithms (계층적 경쟁기반 병렬 유전자 알고리즘을 이용한 퍼지집합 퍼지모델의 최적화)

  • Choi, Jeoung-Nae;Oh, Sung-Kwun;Hwang, Hyung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2097-2098
    • /
    • 2006
  • In this study, we introduce the hybrid optimization of fuzzy inference systems that is based on Hierarchical Fair Competition-based Parallel Genetic Algorithms (HFCGA). HFCGA is a kind of multi-populations of Parallel Genetic Algorithms(PGA), and it is used for structure optimization and parameter identification of fuzzy set model. It concerns the fuzzy model-related parameters as the number of input variables, a collection of specific subset of input variables, the number of membership functions, and the apexes of the membership function. In the hybrid optimization process, two general optimization mechanisms are explored. The structural optimization is realized via HFCGA method whereas in case of the parametric optimization we proceed with a standard least square method as well as HFCGA method as well. A comparative analysis demonstrates that the proposed algorithm is superior to the conventional methods.

  • PDF

Implementation of Adaptive Hierarchical Fair Com pet ion-based Genetic Algorithms and Its Application to Nonlinear System Modeling (적응형 계층적 공정 경쟁 기반 병렬유전자 알고리즘의 구현 및 비선형 시스템 모델링으로의 적용)

  • Choi, Jeoung-Nae;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.120-122
    • /
    • 2006
  • The paper concerns the hybrid optimization of fuzzy inference systems that is based on Hierarchical Fair Competition-based Parallel Genetic Algorithms (HFCGA) and information data granulation. The granulation is realized with the aid of the Hard C-means clustering and HFCGA is a kind of multi-populations of Parallel Genetic Algorithms (PGA), and it is used for structure optimization and parameter identification of fuzzy model. It concerns the fuzzy model-related parameters such as the number of input variables to be used, a collection of specific subset of input variables, the number of membership functions, the order of polynomial, and the apexes of the membership function. In the hybrid optimization process, two general optimization mechanisms are explored. Thestructural optimization is realized via HFCGA and HCM method whereas in case of the parametric optimization we proceed with a standard least square method as well as HFCGA method as well. A comparative analysis demonstrates that the proposed algorithm is superior to the conventional methods.

  • PDF

Implementation and Performance Evaluation of a Firm's Green Supply Chain Management under Uncertainty

  • Lin, Yuanhsu;Tseng, Ming-Lang;Chiu, Anthony S.F.;Wang, Ray
    • Industrial Engineering and Management Systems
    • /
    • v.13 no.1
    • /
    • pp.15-28
    • /
    • 2014
  • Evaluation of the implementation and performance of a firm's green supply chain management (GSCM) is an ongoing process. Balanced scorecard is a multi-criteria evaluation concept that highlights implementation and performance measures. The literature on the framework is abundant literature but scarce on how to build a hierarchical framework under uncertainty with dependence relations. Hence, this study proposes a hybrid approach, which includes applied interpretive structural modeling to build a hierarchical structure and uses the analytic network process to analyze the dependence relations. Additionally, this study applies the fuzzy set theory to determine linguistic preferences. Twenty dependence criteria are evaluated for a GSCM implemented firm in Taiwan. The result shows that the financial aspect and life cycle assessment are the most important performance and weighted criteria.

Risk Allocation of Private Port Development with Hierarchical Fuzzy Process

  • Seong, Yu-Chang;Youn, Myung-Ou
    • Journal of Navigation and Port Research
    • /
    • v.31 no.4
    • /
    • pp.317-323
    • /
    • 2007
  • As economic trade between Korea and China has been encouraged with the rapid growth of Chinese economy and port competition in Northeast Asia, Korean government is trying to promote development and consolidation of ports to cope with the lack of facilities. Thus, many projects for port development have been propelled including the enactment the 'Private investment promotion law for social overhead capital 1994.' However, there are still some unsettled issues since considerable part of risk is still allocated to the Government when it has to support the private businesses in these port investments whenever unexpected problems arise. Allocation of risk among the participants - in this case especially - is a very subtle issue, however, it was revealed that not many precedent researches were done on the subject. In my previous research, I classified and analyzed 4 principle risks i.e, construction, management, financial and social risk. This research investigates the reasonable allocation of the risks among the participants using the Hierarchial Fuzzy Process. In the result of analysis, responsibility of private party is the most important and it must put the responsibility before Government' roll concerned. Also, this research displayed and proposed the direction of management method on port development in a view of minimizing risk and maximizing initiative of a private party.

A Quantitative Decision-making Analysis Using Fuzzy Theory in Nuclear Power Plants

  • Moosung Jae;Moon, Joo-Hyun
    • International Journal of Reliability and Applications
    • /
    • v.2 no.2
    • /
    • pp.137-146
    • /
    • 2001
  • In general, analysis of the decision problems in nuclear system management involves a simultaneous consideration of various criteria and decision alternatives. Sometimes, it is a complex, unstructured, ill-defined process incorporating the multi-criteria and the data of impreciseness. To cope with this analysis, a fuzzy hierarchical analysis methodology is proposed and demonstrated with a simple example.

  • PDF

Optimal Fuzzy Models with the Aid of SAHN-based Algorithm

  • Lee Jong-Seok;Jang Kyung-Won;Ahn Tae-Chon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.138-143
    • /
    • 2006
  • In this paper, we have presented a Sequential Agglomerative Hierarchical Nested (SAHN) algorithm-based data clustering method in fuzzy inference system to achieve optimal performance of fuzzy model. SAHN-based algorithm is used to give possible range of number of clusters with cluster centers for the system identification. The axes of membership functions of this fuzzy model are optimized by using cluster centers obtained from clustering method and the consequence parameters of the fuzzy model are identified by standard least square method. Finally, in this paper, we have observed our model's output performance using the Box and Jenkins's gas furnace data and Sugeno's non-linear process data.