• Title/Summary/Keyword: Hierarchical Cellular Network

Search Result 15, Processing Time 0.023 seconds

The Role of High-throughput Transcriptome Analysis in Metabolic Engineering

  • Jewett, Michael C.;Oliveira, Ana Paula;Patil, Kiran Raosaheb;Nielsen, Jens
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.5
    • /
    • pp.385-399
    • /
    • 2005
  • The phenotypic response of a cell results from a well orchestrated web of complex interactions which propagate from the genetic architecture through the metabolic flux network. To rationally design cell factories which carry out specific functional objectives by controlling this hierarchical system is a challenge. Transcriptome analysis, the most mature high-throughput measurement technology, has been readily applied In strain improvement programs in an attempt to Identify genes involved in expressing a given phenotype. Unfortunately, while differentially expressed genes may provide targets for metabolic engineering, phenotypic responses are often not directly linked to transcriptional patterns, This limits the application of genome-wide transcriptional analysis for the design of cell factories. However, improved tools for integrating transcriptional data with other high-throughput measurements and known biological interactions are emerging. These tools hold significant promise for providing the framework to comprehensively dissect the regulatory mechanisms that identify the cellular control mechanisms and lead to more effective strategies to rewire the cellular control elements for metabolic engineering.

Protein Function Finding Systems through Domain Analysis on Protein Hub Network (단백질 허브 네트워크에서 도메인분석을 통한 단백질 기능발견 시스템)

  • Kang, Tae-Ho;Ryu, Jea-Woon;Kim, Hak-Yong;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.1
    • /
    • pp.259-271
    • /
    • 2008
  • We propose a protein function finding algorithm that is able to predict specific molecular function for unannotated proteins through domain analysis from protein-protein network. To do this, we first construct protein-protein interaction(PPI) network in Saccharomyces cerevisiae from MIPS databases. The PPI network(proteins; 3,637, interactions; 10,391) shows the characteristics of a scale-free network and a hierarchical network that proteins with a number of interactions occur in small and the inherent modularity of protein clusters. Protein-protein interaction databases obtained from a Y2H(Yeast Two Hybrid) screen or a composite data set include random false positives. To filter the database, we reconstruct the PPI networks based on the cellular localization. And then we analyze Hub proteins and the network structure in the reconstructed network and define structural modules from the network. We analyze protein domains from the structural modules and derive functional modules from them. From the derived functional modules with high certainty, we find tentative functions for unannotated proteins.

Integrative Analysis of Microarray Data with Gene Ontology to Select Perturbed Molecular Functions using Gene Ontology Functional Code

  • Kim, Chang-Sik;Choi, Ji-Won;Yoon, Suk-Joon
    • Genomics & Informatics
    • /
    • v.7 no.2
    • /
    • pp.122-130
    • /
    • 2009
  • A systems biology approach for the identification of perturbed molecular functions is required to understand the complex progressive disease such as breast cancer. In this study, we analyze the microarray data with Gene Ontology terms of molecular functions to select perturbed molecular functional modules in breast cancer tissues based on the definition of Gene ontology Functional Code. The Gene Ontology is three structured vocabularies describing genes and its products in terms of their associated biological processes, cellular components and molecular functions. The Gene Ontology is hierarchically classified as a directed acyclic graph. However, it is difficult to visualize Gene Ontology as a directed tree since a Gene Ontology term may have more than one parent by providing multiple paths from the root. Therefore, we applied the definition of Gene Ontology codes by defining one or more GO code(s) to each GO term to visualize the hierarchical classification of GO terms as a network. The selected molecular functions could be considered as perturbed molecular functional modules that putatively contributes to the progression of disease. We evaluated the method by analyzing microarray dataset of breast cancer tissues; i.e., normal and invasive breast cancer tissues. Based on the integration approach, we selected several interesting perturbed molecular functions that are implicated in the progression of breast cancers. Moreover, these selected molecular functions include several known breast cancer-related genes. It is concluded from this study that the present strategy is capable of selecting perturbed molecular functions that putatively play roles in the progression of diseases and provides an improved interpretability of GO terms based on the definition of Gene Ontology codes.

Implications of Circadian Rhythm in Dopamine and Mood Regulation

  • Kim, Jeongah;Jang, Sangwon;Choe, Han Kyoung;Chung, Sooyoung;Son, Gi Hoon;Kim, Kyungjin
    • Molecules and Cells
    • /
    • v.40 no.7
    • /
    • pp.450-456
    • /
    • 2017
  • Mammalian physiology and behavior are regulated by an internal time-keeping system, referred to as circadian rhythm. The circadian timing system has a hierarchical organization composed of the master clock in the suprachiasmatic nucleus (SCN) and local clocks in extra-SCN brain regions and peripheral organs. The circadian clock molecular mechanism involves a network of transcription-translation feedback loops. In addition to the clinical association between circadian rhythm disruption and mood disorders, recent studies have suggested a molecular link between mood regulation and circadian rhythm. Specifically, genetic deletion of the circadian nuclear receptor Rev-$erb{\alpha}$ induces mania-like behavior caused by increased midbrain dopaminergic (DAergic) tone at dusk. The association between circadian rhythm and emotion-related behaviors can be applied to pathological conditions, including neurodegenerative diseases. In Parkinson's disease (PD), DAergic neurons in the substantia nigra pars compacta progressively degenerate leading to motor dysfunction. Patients with PD also exhibit non-motor symptoms, including sleep disorder and neuropsychiatric disorders. Thus, it is important to understand the mechanisms that link the molecular circadian clock and brain machinery in the regulation of emotional behaviors and related midbrain DAergic neuronal circuits in healthy and pathological states. This review summarizes the current literature regarding the association between circadian rhythm and mood regulation from a chronobiological perspective, and may provide insight into therapeutic approaches to target psychiatric symptoms in neurodegenerative diseases involving circadian rhythm dysfunction.

An Efficient Location Cache Scheme for 3-level Database Architecture in PCS Networks (PCS 네트워크에서 3-레벨 데이터베이스 구조를 위한 효과적인 위치 캐시 기법)

  • Han, Youn-Hee;Song, Ui-Sung;Hwang, Chong-Sun;Jeong, Young-Sik
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.3
    • /
    • pp.253-264
    • /
    • 2002
  • Recently, hierarchical architectures of databases for location management have been proposed in order to accommodate the increase in user population in future personal communication systems. In particular, a 3-level hierarchical database architecture is compatible with current cellular mobile systems. In the architecture, a newly developed additional databases, regional location database(RLR), are positioned between HLR and VLRs. We propose an efficient cache scheme, called the Double T-thresholds Location Cache Scheme. The cache scheme extends the existing T-threshold location cache scheme which is competent only under 2-level architecture of location databases currently adopted by IS-41 and GSM. The idea behind our scheme is to use two pieces of cache information, VLR and RLR serving called portables. The two pieces are required in order to exploit root only locality of registration area(RA) but also locality of regional registration area(RRA) which is the wide area covered by RLR. We also use two threshold values in order to determine whether the two pieces are obsolete. In order to model the RRA residence time, the branching Eralng-$\infty$ distribution is introduced. Our minute cost analysis shows that the double T-threshold location cache scheme yields significant reduction of network and database costs for molt patterns of portables.