DOI QR코드

DOI QR Code

Integrative Analysis of Microarray Data with Gene Ontology to Select Perturbed Molecular Functions using Gene Ontology Functional Code

  • Kim, Chang-Sik (Department of Biological Sciences, Sookmyung Women's University) ;
  • Choi, Ji-Won (Department of Biological Sciences, Sookmyung Women's University) ;
  • Yoon, Suk-Joon (Department of Biological Sciences, Sookmyung Women's University)
  • 발행 : 2009.06.30

초록

A systems biology approach for the identification of perturbed molecular functions is required to understand the complex progressive disease such as breast cancer. In this study, we analyze the microarray data with Gene Ontology terms of molecular functions to select perturbed molecular functional modules in breast cancer tissues based on the definition of Gene ontology Functional Code. The Gene Ontology is three structured vocabularies describing genes and its products in terms of their associated biological processes, cellular components and molecular functions. The Gene Ontology is hierarchically classified as a directed acyclic graph. However, it is difficult to visualize Gene Ontology as a directed tree since a Gene Ontology term may have more than one parent by providing multiple paths from the root. Therefore, we applied the definition of Gene Ontology codes by defining one or more GO code(s) to each GO term to visualize the hierarchical classification of GO terms as a network. The selected molecular functions could be considered as perturbed molecular functional modules that putatively contributes to the progression of disease. We evaluated the method by analyzing microarray dataset of breast cancer tissues; i.e., normal and invasive breast cancer tissues. Based on the integration approach, we selected several interesting perturbed molecular functions that are implicated in the progression of breast cancers. Moreover, these selected molecular functions include several known breast cancer-related genes. It is concluded from this study that the present strategy is capable of selecting perturbed molecular functions that putatively play roles in the progression of diseases and provides an improved interpretability of GO terms based on the definition of Gene Ontology codes.

키워드

참고문헌

  1. Aggarwal, S., and Gurney, A.L. (2002). IL-17: prototype member of an emerging cytokine family. J. Leukoc. Biol. 71, 1-8
  2. Amirkhosravi, A., Meyer, T., Warnes, G., Amaya, M., Malik, Z., Biggerstaff, J.P., Siddiqui, F.A., Sherman, P., and Francis, J.L. (1998). Pentoxifylline Inhibits Hypoxia-induced Upregulation of Tumor Cell Tissue Factor and Vascular Endothelial Growth Factor. Thromb . Haemost . 4, 598-602
  3. Ashburner, M., Ball, C.A., Blake, J.A., et al. (2000). Gene Ontology: tool for the unification of biology. Nat. Genet. 25, 25-29 https://doi.org/10.1038/75556
  4. Sennino, B., Kuhnert, F., Tabruyn, S.P., Mancuso, M.R., Hu-Lowe, D.D., Kuo, C.J., and McDonald, D.M. (2009). Cellular Source and Amount of Vascular Endothelial Growth Factor and Platelet-Derived Growth Factor in Tumors Determine Response to Angiogenesis Inhibitors. Cancer Res. 69, 4527 https://doi.org/10.1158/0008-5472.CAN-08-3779
  5. Benhaj, K., Akcali, K.C., and Ozturk, M. (2006). Redundant expression of canonical Wnt ligands in human breast cancer cell lines. Oncol. Rep. 15, 701-707
  6. Bin Amer, S.M., Maqbool, Z., Nirmal, M.S., Qattan, A.T., Hussain, S.S., Jeprel, H.A., Tulbah, A.M., Malik, O.A., and Al-Tweigeri, T.A. (2008). Gene expression profiling in women with breast cancer in a Saudi population. Saudi Med . J. 29, 507-513
  7. Campo, L., Turley, H., Han, C., Pezzella, F., Gatter, K.C., Harris, A.L., and Fox, S.B. (2005). Angiogenin is up-regulated in the nucleus and cytoplasm in human primary breast carcinoma and is associated with markers of hypoxia but not survival. J. Pathol. 205, 585-591 https://doi.org/10.1002/path.1740
  8. Chen, W., Salto-Tellez, M., Palanisamy, N., et al. (2007). Targets of genome copy number reduction in primary breast cancers identified by integrative genomics. Genes Chromo. Cancer 46, 288-301 https://doi.org/10.1002/gcc.20411
  9. Danasekaran, S.M., Barrette, T.R., Ghosh, D., et al. (2001). Delineation of prognostic biomarkers in prostate cancer metastasis. Nature 412, 822-826 https://doi.org/10.1038/35090585
  10. Derevianko, A., Graeber, T., D'Amico, R., and Simms, H.H. (1996). Altered oxygen tension modulates cytokine-induced signal transduction in polymorphonuclear leukocytes: regulation of the GPLD pathway. Shock 2, 97-105 https://doi.org/10.1097/00024382-199602000-00003
  11. Eisen, S.F., and Brown, H.A. (2002). Selective estrogen receptor (ER) modulators differentially regulate phospholipase D catalytic activity in ER-Negative breast cancer cells. Mol. Pharmacol. 62, 911-920 https://doi.org/10.1124/mol.62.4.911
  12. Flanagan, J.M., Munoz-Alegre, M., Henderson, S., et al. (2009). Gene-body hypermethylation of ATM in peripheral blood DNA of bilateral breast cancer patients. Hum. Mol. Genet. 18, 1332-1342 https://doi.org/10.1093/hmg/ddp033
  13. Fuja, T.J., Lin, F., Osann, K.E., and Bryant, P.J. (2004). Somatic mutations and altered expression of the candidate tumor suppressors CSNK1 epsilon, DLG1, and EDD/hHYD in mammary ductal carcinoma. Cancer Res. 64, 942-951 https://doi.org/10.1158/0008-5472.CAN-03-2100
  14. Goodale, D., Phay, C., Brown, W., Gray-Statchuk, L., Furlong, P., Lock, M., Chin-Yee, I., Keeney, M., and Allan, A.L. (2009). Flow cytometric assessment of monocyte activation markers and circulating endothelial cells in patients with localized or metastatic breast cancer. Cytometry B Clin. Cytom. 76, 107-117 https://doi.org/10.1002/cyto.b.20449
  15. Greco, S., Elia, M.G., Muscella, A., Romano, S., Storelli, C., and Marsigliante, S. (2005). Bradykinin stimulates cell proliferation through an extracellular-regulated kinase 1 and 2-dependent mechanism in breast cancer cells in primary culture. J. Endocrinol. 186, 291-301 https://doi.org/10.1677/joe.1.06052
  16. Han, C.Z., Du, L.L., Jing, J.X., Zhao, X.W., Tian, F.G., Shi, J., Tian, B.G., Liu, X.Y., and Zhang, L.J. (2008). Associations among lipids, leptin, and leptin receptor gene Gin223Arg polymorphisms and breast cancer in China. Biol. Trace. Elem. Res. 126, 38-48 https://doi.org/10.1007/s12011-008-8182-z
  17. Han, G., Fan, B., Zhang, Y., Zhou, X., Wang, Y., Dong, H., Wei, Y., Sun, S., Hu, M., Zhang, J., and Wei, L. (2008). Positive regulation of migration and invasion by vasodilator-stimulated phosphoprotein via Rac1 pathway in human breast cancer cells. Oncol. Rep. 20, 929-938
  18. Hassan, M.I., Waheed, A., Yadav, S., Singh, T.P., and Ahmad, F. (2009). Prolactin inducible protein in cancer, fertility and immunoregulation: structure, function and its clinical implications. Cell. Mol. Life Sci. 66, 447-459 https://doi.org/10.1007/s00018-008-8463-x
  19. Hollestelle, A., Elstrodt, F., Nagel, J.H., Kallemeijn, W.W., and Schutte, M. (2007). Phosphatidylinositol-3-OH kinase or RAS pathway mutations in human breast cancer cell lines. Mol. Cancer Res. 5, 195-201 https://doi.org/10.1158/1541-7786.MCR-06-0263
  20. Reubi, J.C. (2003). Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr. Rev. 24, 389-427 https://doi.org/10.1210/er.2002-0007
  21. Hill, J.J., Tremblay, T.L., Cantin, C., O'Connor-McCourt, M., Kelly, J.F. and Lenferink, A.E. (2009). Glycoproteomic analysis of two mouse mammary cell lines during transforming growth factor (TGF)-$\beta$ induced epithelial to mesenchymal transition. Proteome Sci. 7, 2 https://doi.org/10.1186/1477-5956-7-2
  22. Kabbage, M., Chahed, K., Hamrita, B., Guillier, C.L., Trimeche, M., Remadi, S., Hoebeke, J., and Chouchane, L. (2008). Protein alterations in infiltrating ductal carcinomas of the breast as detected by nonequilibrium pH gradient electrophoresis and mass spectrometry. J. Biomed. Biotechnol. 2008, 564127 https://doi.org/10.1155/2008/564127
  23. Kulka, J., Szasz, A.M., Nemeth, Z., Madaras, L., Schaff, Z., Molnar, I.A., and Tokes, A.M. (2009). Expression of Tight Junction Protein Claudin-4 in Basal-Like Breast Carcinomas. Pathol. Oncol. Res. 15, 59-64 https://doi.org/10.1007/s12253-008-9089-x
  24. Lane, J., Martin, T.A., Mansel, R.E., and Jiang, W.G. (2008). The expression and prognostic value of the guanine nucleotide exchange factors (GEFs) Trio, Vav1 and TIAM-1 in human breast cancer. Int. Semin . Surg. Oncol. 5, 23. https://doi.org/10.1186/1477-7800-5-23
  25. Lee, S.G., Hur, J.U., and Kim, Y.S. (2004). A graph-theoretic modeling on GO space for biological interpretation of gene clusters. Bioinformatics 20, 381-388 https://doi.org/10.1093/bioinformatics/btg420
  26. Lee, S.W., Reimer, C.L., Fang, L., Iruela-Arispe, M.L., and Aaronson, S.A. (2000). Overexpression of kinase-associated phosphatase (KAP) in breast and prostate cancer and inhibition of the transformed phenotype by antisense KAP expression. Mol. Cell Biol. 20, 1723-1732 https://doi.org/10.1128/MCB.20.5.1723-1732.2000
  27. Lin, X., Duan, X., Liang, Y.Y., Su, Y., et al. (2006). PPM1A Functions as a Smad Phosphatase to Terminate TGF $\beta$ Signaling. Cell 125, 915-928 https://doi.org/10.1016/j.cell.2006.03.044
  28. Muller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M.E., McClanahan, T., Murphy, E., Yuan, W., Wagner, S.N., Barrera, J.L., Mohar, A., Verástegul, E., and Zlotnik, A. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50-56 https://doi.org/10.1038/35065016
  29. Murabito, J.M., Rosenberg, C.L., Finger, D., Kreger, B.E., Levy, D., Splansky, G.L., Antman, K., and Hwang, S.J. (2007). A genome-wide association study of breast and prostate cancer in the NHLBI's Framingham Heart Study. BMC Med. Genet. 8(Suppl 1), S6 https://doi.org/10.1186/1471-2350-8-S1-S6
  30. Naderi, A., Teschendorff, A.E., Barbosa-Morais, N.L., et al. (2007). A gene-expression signature to predict survival in breast cancer across independent data sets. Oncogene 26, 1507-1516 https://doi.org/10.1038/sj.onc.1209920
  31. Naor, Z. (2009). Signaling by G-protein-coupled receptor (GPCR): Studies on the GnRH receptor. Front. Neuroendocrinol. 30, 10-29 https://doi.org/10.1016/j.yfrne.2008.07.001
  32. Pennanen, P.T., Sarvilinna, N.S., Purmonen, S.R., and Ylikomi, T.J. (2009). Changes in protein tyrosine phosphatase type IVA member 1 and zinc finger protein 36 C3H type-like 1 expression demonstrate altered estrogen and progestin effect in medroxyprogesterone acetate-resistant and estrogen-independent breast cancer cell models. Steroids 74, 404-409 https://doi.org/10.1016/j.steroids.2008.12.005
  33. Pentecost, B.T. (1998). Expression and estrogen regulation of the HEM45 mRNA in human tumor lines and in the rat uterus. J. Steroid Biochem. Mol. Biol. 64, 25-33 https://doi.org/10.1016/S0960-0760(97)00140-4
  34. Reis-Filho, J.S., Steele, D., Di Palma, S., Jones, R.L., Savage, K., James, M., Milanezi, F., Schmitt, F.C., and Ashworth, A. (2006). Distribution and significance of nerve growth factor receptor (NGFR/p75NTR) in normal, benign and malignant breast tissue. Mod. Pathol. 19, 307-319 https://doi.org/10.1038/modpathol.3800542
  35. Dorsam, R.T., and Gutkind, J.S. (2007). G-protein-coupled receptors and cancer. Nat. Rev. Cancer 7, 79-94 https://doi.org/10.1038/nrc2069
  36. Rody, A., Holtrich, U., Gaetje, R., Gehrmann, M., Engels, K., von Minckwitz, G., Loibl, S., Diallo-Danebrock, R., Ruckhäberle, E., Metzler, D., Ahr, A., Solbach, C., Karn, T., and Kaufmann, M. (2007). Poor outcome in estrogen receptor-positive breast cancers predicted by loss of plexin B1. Clin. Cancer Res. 13, 1115-1122 https://doi.org/10.1158/1078-0432.CCR-06-2433
  37. Rouvier, E., Luciani, M.F., Mattei, M.G., Denizot, F., and Golstein, P. (1993). CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. J. Immunol. 150, 5445-5456
  38. Salaun, B., Coste, I., Rissoan, M.C., Lebecque, S.J., and Renno, T. (2006). TLR3 can directly trigger apoptosis in human cancer cells. J. Immunol. 176, 4894-4901 https://doi.org/10.4049/jimmunol.176.8.4894
  39. Turashvili, G.., Bouchal, J., Baumforth, K., Wei, W., et al. (2007). Novel markers for differentiation of lobular and ductal invasive breast carcinomas by laser microsection and microarray analysis. BMC Cancer 7, 55 https://doi.org/10.1186/1471-2407-7-55
  40. Venter, D.J., Ramus, S.J., Hammet, F.M., de Silva, M., Hutchins, A.M., Petrovic, V., Price, G., and Armes, J.E. (2005). Complex CGH alterations on chromosome arm 8p at candidate tumor suppressor gene loci in breast cancer cell lines. Cancer Genet. Cytogenet. 160, 134-140 https://doi.org/10.1016/j.cancergencyto.2004.12.007
  41. Wang, Z., Shen, D., Parsons, D.W., et al. (2004). Mutational analysis of the tyrosine phosphatome in colorectal cancers. Science 304, 1164-1166 https://doi.org/10.1126/science.1096096
  42. Williams, K.J., Cowen, R.L., and Stratford, I.J. (2001). Hypoxia and oxidative stress in breast cancer: Tumour hypoxia - herapeutic considerations. Breast Cancer Res. 3, 328-331 https://doi.org/10.1186/bcr316
  43. Qiu, X., Zhu, X., Zhang, L., Mao, Y., et al. (2003). Human epithelial cancers secrete immunoglobulin g with unidentified specificity to promote growth and survival of tumor cells. Cancer Res. 63, 6488-6495
  44. Yang, Z.Q., Streicher, K.L., Ray, M.E., Abrams, J., and Ethier, S.P. (2006). Multiple interacting oncogenes on the 8p11-p12 amplicon in human breast cancer. Cancer Res. 66, 11632-11643 https://doi.org/10.1158/0008-5472.CAN-06-2946
  45. Zhou, P., Zhi, X., Zhou, T., Chen, S., Li, X., Wang, L., Yin, L., Shao, Z., and Ou, Z. (2007). Overexpression of Ecto-5'-Nucleotidase (CD73) promotes T-47D human breast cancer cells invasion and adhesion to extracellular matrix. Cancer Biol. Ther. 6, 426-431 https://doi.org/10.4161/cbt.6.3.3762