• 제목/요약/키워드: Hierarchical Bayesian Networks

검색결과 15건 처리시간 0.026초

유비쿼터스 가정환경을 위한 계층적 베이지안 네트워크 기반 상호주도형 대화 에이전트 (A mixed-initiative conversational agent using hierarchical Bayesian networks for ubiquitous home environments)

  • 송인지;홍진혁;조성배
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 추계학술대회 학술발표 논문집 제15권 제2호
    • /
    • pp.157-160
    • /
    • 2005
  • 유비쿼터스 환경에서 다양한 서비스를 사용자에게 제공하기 위해 지능형 에이전트는 먼저 사용자의 의도를 정확히 파악해야 한다. 명령어 기반의 기존 사용자 인터페이스와는 달리, 대화는 인간과 에이전트 사이의 유연하고 풍부한 의사소통에 유용하지만, 사용자의 배경지식이나 대화의 문맥에 따라 그 표현이 매우 다양하기 때문에 본 논문에서는 '상호주도형' 의사소통을 위한 계층적 베이지안 네트워크를 이용하여 사용자와 에이전트 사이에 발생하는 대화의 모호성을 해결한다. 서비스 추론 시 정보가 부족할 경우에는 계층적 베이지안 네트워크를 이용하여 추가로 필요한 정보를 분석하고 사용자로부터 수집한다. 제안하는 방법을 유비쿼터스 가정환경에 적용하고 시뮬레이션 환경을 구축하여 그 유용성을 확인하였다.

  • PDF

실내 환경에서 보이지 않는 목표 물체를 탐색하기 위한 활동기반 계층적 베이지안 네트워크 (Hierarchical Bayesian Networks based on Activity for Localizing Hidden Target Objects in Indoor Environment)

  • 송윤석;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.616-618
    • /
    • 2005
  • 서비스 로봇 분야에서 물체를 인식하고 장면을 이해하는 것은 매우 중요하다. 전통적인 방법들은 기하학적 모델을 기반으로 물체를 인식하였으나 불확실하고 동적인 환경에서 이러한 방법은 한계를 갖는다. 이에 최근 지식 기반의 접근 방법을 통해 이러한 부분을 보완하는 연구가 이루어지고 있다. 본 논문에서는 효과적인 물체 탐색을 위해 베이지안 네트워크를 사용하여 대상 물체의 존재 여부를 추론하는 방법을 제안한다. 이를 위해 트리구조의 계층적 베이지안 네트워크를 사용하였고 물체들의 관계를 활동을 기준으로 모델링 하였다. 6가지 장소를 기반으로 한 실험 결과, $86.5\%$의 정확도를 보여주었다.

  • PDF

사람과 서비스 로봇의 상호주도형 의사소통을 위한 계층적 베이지안 네트워크 (Hierarchical Bayesian Networks for Mixed-Initiative Interaction between Human and Service Robot)

  • 송윤석;홍진혁;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 가을 학술발표논문집 Vol.31 No.2 (1)
    • /
    • pp.250-252
    • /
    • 2004
  • 서비스 로봇은 일상생활에서 사람들의 업무를 보조한다. 이때, 효과적인 서비스를 위해서는 사람과 로봇 사이의 상호작용이 매우 중요하다 대화는 사람과 로봇이 보다 유연하고 풍부한 의사전달을 하는데 도움을 준다. 전통적인 로봇 연구에서는 명령과 같은 간단한 질의 둥을 처리하는 것이 의사소통의 전부였으나, 실제 사람들 사이의 대화에서는 배경 지식이나 대화의 문맥 둥에 의해 중요한 정보가 대화에서 생략되기도 한다. 이런 상황은 여러 불확실성을 포함하게 되는데 대화의 문맥이나 불확실성을 다루는 것이 필요하다. 본 논문에서는 '상호-주도' 방식을 통해 사람이 쓰는 일상 대화를 계층적 베이지안 네트워크를 이용하여 처리하는 방법을 제안한다. 실제 로봇의 시뮬레이션 환경은 제안하는 방법의 유용함을 보여주었다.

  • PDF

확률기반 계층적 네트워크를 활용한 교차로 교통사고 인식 및 분석 시스템 (A Traffic Accident Detection and Analysis System at Intersections using Probability-based Hierarchical Network)

  • 황주원;이영설;조성배
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권10호
    • /
    • pp.995-999
    • /
    • 2010
  • 매년 차량의 수가 꾸준히 증가함에 따라 이에 비례하여 도로의 혼잡도와 사고 발생률 또한 증가되고 있다. 이와 같은 교통문제를 완화하기 위해서 도로 설계 및 신호 체계 등이 발전되고 있음에도 불구하고 교통사고로 인한 인명 및 재산 피해는 감소되지 않고 있다. 본 논문에서는 발생원 사고를 실시간으로 인식하여 이에 빠르게 대응함으로써 후속사고를 예방하고 사고 원인을 파악하기 위한 실시간 사고 인식 및 분석 시스템을 제안한다. 제안하는 시스템은 특정 교차로에서 뿐만 아니라 교통흐름과 디자인이 다른 교차로에서 발생한 사고를 정확히 인식하는 것이 목적이다. 본 연구에서는 실제 교차로에서 수집되는 데이터가 정확하다고 보장할 수 없고, 사고 발생에 쓰이는 데이터는 서로 유기적으로 복잡한 관계가 있기 때문에 정확한 사고 인식을 위해 확률기반 연산을 하는 동적 베이지안 네트워크를 이용하였다.

Nonstandard Machine Learning Algorithms for Microarray Data Mining

  • Zhang, Byoung-Tak
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2001년도 제2회 생물정보 워크샵 (DNA Chip Bioinformatics)
    • /
    • pp.165-196
    • /
    • 2001
  • DNA chip 또는 microarray는 다수의 유전자 또는 유전자 조각을 (보통 수천내지 수만 개)칩상에 고정시켜 놓고 DNA hybridization 반응을 이용하여 유전자들의 발현 양상을 분석할 수 있는 기술이다. 이러한 high-throughput기술은 예전에는 생각하지 못했던 여러가지 분자생물학의 문제에 대한 해답을 제시해 줄 수 있을 뿐 만 아니라, 분자수준에서의 질병 진단, 신약 개발, 환경 오염 문제의 해결 등 그 응용 가능성이 무한하다. 이 기술의 실용적인 적용을 위해서는 DNA chip을 제작하기 위한 하드웨어/웻웨어 기술 외에도 이러한 데이터로부터 최대한 유용하고 새로운 지식을 창출하기 위한 bioinformatics 기술이 핵심이라고 할 수 있다. 유전자 발현 패턴을 데이터마이닝하는 문제는 크게 clustering, classification, dependency analysis로 구분할 수 있으며 이러한 기술은 통계학과인공지능 기계학습에 기반을 두고 있다. 주로 사용된 기법으로는 principal component analysis, hierarchical clustering, k-means, self-organizing maps, decision trees, multilayer perceptron neural networks, association rules 등이다. 본 세미나에서는 이러한 기본적인 기계학습 기술 외에 최근에 연구되고 있는 새로운 학습 기술로서 probabilistic graphical model (PGM)을 소개하고 이를 DNA chip 데이터 분석에 응용하는 연구를 살펴본다. PGM은 인공신경망, 그래프 이론, 확률 이론이 결합되어 형성된 기계학습 모델로서 인간 두뇌의 기억과 학습 기작에 기반을 두고 있으며 다른 기계학습 모델과의 큰 차이점 중의 하나는 generative model이라는 것이다. 즉 일단 모델이 만들어지면 이것으로부터 새로운 데이터를 생성할 수 있는 능력이 있어서, 만들어진 모델을 검증하고 이로부터 새로운 사실을 추론해 낼 수 있어 biological data mining 문제에서와 같이 새로운 지식을 발견하는 exploratory analysis에 적합하다. 또한probabilistic graphical model은 기존의 신경망 모델과는 달리 deterministic한의사결정이 아니라 확률에 기반한 soft inference를 하고 학습된 모델로부터 관련된 요인들간의 인과관계(causal relationship) 또는 상호의존관계(dependency)를 분석하기에 적합한 장점이 있다. 군체적인 PGM 모델의 예로서, Bayesian network, nonnegative matrix factorization (NMF), generative topographic mapping (GTM)의 구조와 학습 및 추론알고리즘을소개하고 이를 DNA칩 데이터 분석 평가 대회인 CAMDA-2000과 CAMDA-2001에서 사용된cancer diagnosis 문제와 gene-drug dependency analysis 문제에 적용한 결과를 살펴본다.

  • PDF