• Title/Summary/Keyword: Hierarchical Bayesian

Search Result 167, Processing Time 0.029 seconds

Evaluations of Small Area Estimations with/without Spatial Terms (공간 통계 활용에 따른 소지역 추정법의 평가)

  • Shin, Key-Il;Choi, Bong-Ho;Lee, Sang-Eun
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.2
    • /
    • pp.229-244
    • /
    • 2007
  • Among the small area estimation methods, it has been known that hierarchical Bayesian(HB) approach is the most reasonable and effective method. However any model based approaches need good explanatory variables and finding them is the key role in the model based approach. As the lacking of explanatory variables, adopting the spatial terms in the model was introduced. Here in this paper, we evaluate the model based methods with/without spatial terms using the diagnostic methods which were introduced by Brown et al. (2001). And Economic Active Population Survey(2005) is used for data analysis.

Parameter Optimization and Uncertainty Analysis of the Rainfall-Runoff Model Coupled with Hierarchical Bayesian Inference Scheme (Hierarchical Bayesian 기법을 통한 강우-유출모형 매개변수의 최적화 및 불확실성 분석)

  • Mun, Yeong-Il;Gwon, Hyeon-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1752-1756
    • /
    • 2007
  • 정교한 강우-유출 모의를 위해서는 적절한 매개변수의 추정이 필수적이며, 매개변수 추정 방법은 시행착오(trial and error)에 의한 수동보정법과 최적화방법을 사용한 자동보정법으로 구분할 수 있다. 모형의 매개변수의 수가 많은 경우 수동보정법에 의한 매개변수 추정은 매우 어렵다. 자동 보정법에 사용되는 최적화방법은 Rosenbrock 알고리즘, patten search, 컴플렉스(complex) 방법, Powell 방법 등과 같은 지역최적화 방법과 전역최적화 방법으로 나눌 수 있다. 그러나 기존 방법론들은 매개변수의 최적화를 추적하기 위한 알고리즘이 대부분이며 이들 매개변수에 관련된 불확실성을 평가하는데는 미흡한 단접이 있다. 이러한 점에서 본 연구에서는 강우-유출모형의 매개변수 추정에 있어서 불확실성을 평가할 수 있는 새로운 방법론을 검토하고자 한다. 매개변수와 관련된 불확실성을 평가하기 위한 방법은 여러 가지가 있으나 통계적으로 매우 우수한 능력을 보이는 Hierarchical Bayesian 알고리즘을 Probability-Distributed 강우-유출 모형에 적용하였다. 본 방법론은 최적화와 동시에 각 매개변수에 관련된 사후분포(posterior distribution)의 추정이 가능하므로 모형이 갖는 불확실성을 효과적으로 평가할 수 있다. 따라서, 수자원 관리에 있어서 불확실성을 고려할 수 있으므로 보다 수리수문학적 위험도를 저감할 수 있을 것으로 판단된다.

  • PDF

A Regional Changing Point Analysis of Han River Watershed Using a Hierarchical Bayesian Model (계층적 Bayesian 변동점 분석기법을 활용한 한강유역 수문자료 변동성의 지역적 분석)

  • Kim, Jin-Guk;Na, Bong-Kil;Kwon, Young-Jun;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.206-206
    • /
    • 2016
  • 최근 기상변동성 증가 및 기후변화로 인해 기존 한반도의 기상패턴과 다른 이상강우 현상이 증가하고 있다. 이러한 변동성 증가는 수자원 계획을 수립하는데 있어 불확실성을 가중시키기고 있다. 이러한 점에서 수문 시계열의 변화양상을 효과적으로 인지할 수 있으며, 유역단위에서 일관된 변화를 평가할 수 있는 변동성 분석 개발이 필요하다. 이에 본 연구에서는 기존 변동성 분석방법에 계층적 베이지안(Hierarchical Bayesian) 기법을 연계하여 유역단위에서 변동점 해석을 위한 모형을 개발하였다. 한강유역의 30년 이상의 강우 자료를 활용하여 연강우량 자료를 구축하였으며, 본 연구를 통해 개발된 모형의 적합성을 평가하였다. 분석결과, 약 2000년대를 기준으로 강우의 변화 양상을 확인할 수 있었으며, 과거에 비해 강우의 증가 특성을 효과적으로 평가할 수 있었다. 이와 같은 수문기상자료에 대한 변동성 분석은 미래에 발생 가능한 홍수나 가뭄과 같은 사상을 모의함에 있어 효율적으로 활용될 수 있을 것으로 판단된다.

  • PDF

Robustness in the Hierarchical Bayes Estimation of Normal Means

  • Kim, Dal-Ho;Park, Jin -Kap
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.2
    • /
    • pp.511-522
    • /
    • 1999
  • The paper considers the problem of robustness in hierarchical bayesian models. In specific we address Bayesian robustness in the estimation of normal means. We provide the ranges of the posterior means under $\varepsilon$-contamination class as well as the density ratio class of priors. For the class of priors that are uniform over a specified interval we investigate the sensitivity as to the choice of the intervals. The methods are illustrated using the famous baseball data of Efron and Morris(1975).

  • PDF

Robust Bayesian Models for Meta-Analysis

  • Kim, Dal-Ho;Park, Gea-Joo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.11 no.2
    • /
    • pp.313-318
    • /
    • 2000
  • This article addresses aspects of combining information, with special attention to meta-analysis. In specific, we consider hierarchical Bayesian models for meta-analysis under priors which are scale mixtures of normal, and thus have tail heavier than that of the normal. Numerical methods of finding Bayes estimators under these heavy tailed prior are given, and are illustrated with an actual example.

  • PDF

Development of Hierarchical Bayesian Spatial Regional Frequency Analysis Model Considering Geographical Characteristics (지형특성을 활용한 계층적 Bayesian Spatial 지역빈도해석)

  • Kim, Jin-Young;Kwon, Hyun-Han;Lim, Jeong-Yeul
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.5
    • /
    • pp.469-482
    • /
    • 2014
  • This study developed a Bayesian spatial regional frequency analysis, which aimed to analyze spatial patterns of design rainfall by incorporating geographical information (e.g. latitude, longitude and altitude) and climate characteristics (e.g. annual maximum series) within a Bayesian framework. There are disadvantages to considering geographical characteristics and to increasing uncertainties associated with areal rainfall estimation on the existing regional frequency analysis. In this sense, this study estimated the parameters of Gumbel distribution which is a function of geographical and climate characteristics, and the estimated parameters were spatially interpolated to derive design rainfall over the entire Han-river watershed. The proposed Bayesian spatial regional frequency analysis model showed similar results compared to L-moment based regional frequency analysis, and even better performance in terms of quantifying uncertainty of design rainfall and considering geographical information as a predictor.

A Development of Regional Frequency Model Based on Hierarchical Bayesian Model (계층적 Bayesian 모형 기반 지역빈도해석 모형 개발)

  • Kwon, Hyun-Han;Kim, Jin-Young;Kim, Oon-Ki;Lee, Jeong-Ju
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.1
    • /
    • pp.13-24
    • /
    • 2013
  • The main objective of this study was to develop a new regional frequency analysis model based on hierarchical Bayesian model that allows us to better estimate and quantify model parameters as well as their associated uncertainties. A Monte-carlo experiment procedure has been set up to verify the proposed regional frequency analysis. It was found that the proposed hierarchical Bayesian model based regional frequency analysis outperformed the existing L-moment based regional frequency analysis in terms of reducing biases associated with the model parameters. Especially, the bias is remarkably decreased with increasing return period. The proposed model was applied to six weather stations in Jeollabuk-do, and compared with the existing L-moment approach. This study also provided shrinkage process of the model parameters that is a typical behavior in hierarchical Bayes models. The results of case study show that the proposed model has the potential to obtain reliable estimates of the parameters and quantitatively provide their uncertainties.

Bayesian Methods for Combining Results from Different Experiments

  • Lee, In-Suk;Kim, Dal-Ho;Lee, Keun-Baik
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.1
    • /
    • pp.181-191
    • /
    • 1999
  • We consider Bayesian models allow multiple grouping of parameters for the normal means estimation problem. In particular, we consider a typical Bayesian hierarchical approach based on thepartial exchangeability where the components within a subgroup are exchangeable, but the different subgroups are not. We discuss implementation of such Bayesian procedures via Gibbs sampling. We illustrate the proposed methods with numerical examples.

  • PDF

A development of hierarchical bayesian model for changing point analysis at watershed scale (유역단위에서의 연강수량의 변동점 분석을 위한 계층적 Bayesian 분석기법 개발)

  • Kim, Jin-Guk;Kim, Jin-Young;Kim, Yoon-Hee;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.2
    • /
    • pp.75-87
    • /
    • 2017
  • In recent decades, extreme events have been significantly increased over the Korean Peninsula due to climate variability and climate change. The potential changes in hydrologic cycle associated with the extreme events increase uncertainty in water resources planning and designing. For these reasons, a reliable changing point analysis is generally required to better understand regime changes in hydrologic time series at watershed scale. In this study, a hierarchical changing point analysis approach that can apply in a watershed scale is developed by combining the existing changing point analysis method and hierarchical Bayesian method. The proposed model was applied to the selected stations that have annual rainfall data longer than 40 years. The results showed that the proposed model can quantitatively detect the shift in precipitation in the middle of 1990s and identify the increase in annual precipitation compared to the several decades prior to the 1990s. Finally, we explored the changes in precipitation and sea level pressure in the context of large-scale climate anomalies using reanalysis data, for a given change point. It was concluded that the identified large-scale patterns were substantially different from each other.

A study of spatial scaling approach for regionalization of streamflow data at ungaged watershed (공간적 scaling 기법을 적용한 미계측유역 하천자료의 지역화에 관한 연구)

  • Kim, Jin-Guk;Kwon, Duk-Soon;Choi, Byoung-Han;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.36-36
    • /
    • 2016
  • 하천정비나 유역종합 치수계획 등 수자원계획을 수립하는 과정에 있어 하천의 설계홍수량 추정은 필수적이며, 하천의 수공구조물의 안전성과 수문학적 위험도를 산정하는데도 활용되고 있다. 그러나 매년 관측되는 강우량 자료에 비해 유출량 자료의 길이가 비교적 짧아 신뢰성 있는 홍수량자료의 구축이 어려운 실정이며, 미계측 유역에 위치한 중소규모 하천의 설계홍수량과 같은 수문학적 자료는 매우 제한적이다. 이러한 이유로 본 연구에서는 기 수립된 하천정비기본계획의 자료들을 활용하여 유역의 특성(면적, 경사, 고도)이 고려되는 새로운 홍수량 산정식을 개발하였으며, Bayesian GLM(generalized linear method) 기법을 활용하여 미계측 유역의 지역화를 통한 홍수량의 추정이 가능하도록 하였다. 또한 Hierarchical Bayesian 기법을 활용하여 개발된 공식에 활용되는 매개변수의 불확실성을 구간을 산정하였다. Bayesian 기법의 도입으로 산정되는 홍수량의 불확실성 구간을 정량적으로 제시할 수 있었으며, 제안된 연구 결과는 미계측 유역의 홍수량을 추정하는 도구로서 활용성이 높을 것으로 기대된다.

  • PDF