Proceedings of the Korean Information Science Society Conference
/
2012.06b
/
pp.477-479
/
2012
개의 발성은 성도의 물리적인 특징에 따라 고유의 특정 포먼트를 만들어 내며 개의 품종에 따라 다른 물리적 특징을 가지므로 개의 발성을 HMM(Hidden Markov Model)으로 모델링하여 개의 품종을 분류하는 연구를 하였다. 주파수 특징은 MFCC(Mel Frequency Cepstral Coefficients) 12차, 에너지 컴포넌트 1차, 델타 13차, 억셀러레이션(Acceleration) 13차, 총 39차 벡터를 사용하였다. 개의 품종 분류에 적합한 HMM 구조의 설계를 위하여 기본 좌우 모델, 좌우 모델, 좌우 모델2, 전후진 모델, 총 4가지를 제안하고 실험하여 성능을 비교분석하였다. 이 중 전후진 모델이 가장 바람직한 모델로 검증 되었다. 본 모델은 다음과 같은 장점을 갖는다. (1) 기본 좌우 모델과 마찬가지로 1~2회 발성을 갖는 데이터가 입력되어도 처음에서 마지막 상태까지의 이동단계가 최소 3번까지 가능하므로 적은 횟수의 발성 데이터도 처리가 가능하다. (2) 다수 반복된 발성 데이터의 신호도 처리가 가능하다. 즉, 본 모델은 상태의 이동이 후진도 가능하므로 5회이상 반복된 발성 데이터의 신호의 처리도 가능하다.
The Journal of Korean Institute of Communications and Information Sciences
/
v.34
no.3C
/
pp.257-267
/
2009
This paper presents a training method for neural networks and the employment of MSE (mean scare error) values as the basis of a decision regarding the identity claim of a speaker in a recurrent neural networks based speaker verification system. Recurrent neural networks (RNNs) are employed to capture temporally dynamic characteristics of speech signal. In the process of supervised learning for RNNs, target outputs are automatically generated and the generated target outputs are made to represent the temporal variation of input speech sounds. To increase the capability of discriminating between the true speaker and an impostor, a discriminative training method for RNNs is presented. This paper shows the use and the effectiveness of the MSE value, which is obtained from the Euclidean distance between the target outputs and the outputs of networks for test speech sounds of a speaker, as the basis of speaker verification. In terms of equal error rates, results of experiments, which have been performed using the Korean speech database, show that the proposed speaker verification system exhibits better performance than a conventional hidden Markov model based speaker verification system.
Journal of the Institute of Convergence Signal Processing
/
v.15
no.2
/
pp.37-41
/
2014
The vector Taylor series (VTS) based method usually employs clean speech Hidden Markov Models (HMMs) when compensating speech feature vectors or adapting the parameters of trained HMMs. It is well-known that noisy speech HMMs trained by the Multi-condition TRaining (MTR) and the Multi-Model-based Speech Recognition framework (MMSR) method perform better than the clean speech HMM in noisy speech recognition. In this paper, we propose a method to use the noise-adapted HMMs in the VTS-based speech feature compensation method. We derived a novel mathematical relation between the train and the test noisy speech feature vector in the log-spectrum domain and the VTS is used to estimate the statistics of the test noisy speech. An iterative EM algorithm is used to estimate train noisy speech from the test noisy speech along with noise parameters. The proposed method was applied to the noise-adapted HMMs trained by the MTR and MMSR and could reduce the relative word error rate significantly in the noisy speech recognition experiments on the Aurora 2 database.
Kim, Geon-Su;Lee, Dong-Hun;Yun, Tae-Bok;Lee, Ji-Hyeong
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2008.04a
/
pp.56-59
/
2008
현재의 음악 서비스들의 대부분은 음악을 가수 이름이나 장르와 같은 키워드들로 구분하여 사용자에게 제공한다. 하지만 음악의 장르가 다양해지고, 장르별로 음악의 유형도 다양해짐에 따라 키워드 기반은 음악 제공 방법만으로는 사용자가 원하는 음악을 제공하는데 한계가 있다. 이런 한계점을 극복하기 위하여 음악 자체의 성질을 기반으로 음악을 분석하는 컨텐츠 기반의 음악 분석 방법이 필요하다. 또한 사용자가 원하는 음악을 제공 받을 수 있도록 사용자의 음악 선호도를 분석하여 그에 맞는 음악을 제공하는 방법도 필요하다. 본 논문에서는 음악의 시퀀스 정보와 특징을 추출하여 음악 모델을 구축하고, 이를 사용하여 사용자의 음악 선호도를 분석하는 방법을 제안하고, 사용자의 선호도에 맞는 음악을 제공하기 위하여 선호도 분석 방법을 통해 음악을 추천해주는 시스템을 제안한다.
In this paper we propose an automatic segmentation system that outputs the time alignment information of phoneme boundary using Viterbi search with HMM (Hidden Markov Model) and corrects these results by an UVS (unvoiced/voiced/silence) classification algorithm. We selecte a set of 39 monophones and a set of 647 extended phones for HMM models. For the UVS classification we use the feature parameters such as ZCR (Zero Crossing Rate), log energy, spectral distribution. The result of forced alignment using the extended phone set is 11% better than that of the monophone set. The UVS classification algorithm shows high performance to correct the segmentation results.
In an effort to enhance the quality of feature vector classification and thereby reduce the recognition error rate of the speaker-independent speech recognition, we employ the Mahalanobis distance in the calculation of the similarity measure between feature vectors. It is assumed that the metric matrix of the Mahalanobis distance be diagonal for the sake of cost reduction in memory and time of calculation. We propose that the diagonal elements be given in terms of the variations of the feature vector components. Geometrically, this prescription tends to redistribute the set of data in the shape of a hypersphere in the feature vector space. The idea is applied to the speech recognition by hidden Markov model with fuzzy vector quantization. The result shows that the recognition is improved by an appropriate choice of the relevant adjustable parameter. The Viterbi score difference of the two winners in the recognition test shows that the general behavior is in accord with that of the recognition error rate.
기존의 로봇은 주로 예측 가능한 환경 하에서 동작해왔다. 그러나 로봇의 적용분야가 확대되면서 예측하기 힘든 복잡한 자극에 대해 반응하도록 요구되고 있다. 복잡한 자극은 동일시간에 여러 가지 자극이 존재하는 공간적 복잡성과, 각기 다른 시간에 자극이 연속적으로 배열된 시간적 복잡성을 가진다. 기존의 로봇은 복잡한 자극에 대한 대처능력이 취약하다. 이러한 환경에서 적응할 수 있도록 여러 방면의 연구가 진행되어 왔으며, 그 중에서 동물이 환경의 변화에 대처하는 방법에 관한 많은 연구들이 진행되고 있다. 본 논문에서는 시간적 복잡성을 가진 자극에 반응하고 이를 학습하기 위해 HMM(Hidden Markov Model)을 이용한 시계열 학습구조를 제안한다. 또한 기본적인 행동선택 및 학습을 위해 동물의 행동선택을 모델링한 구조를 구현하였다.
Annual Conference on Human and Language Technology
/
1992.10a
/
pp.193-199
/
1992
이 논문에서는 123개 단어의 한국어 음성에 대하여 음성의 대역폭 변화에 따른 인식률을 비교하였다. 인식률 비교실험을 위해 hidden Markov model과 음소와 유사한 131개의 한국어 subword 유니트를 사용한 화자독립 격리단어 인식 시스팀을 사용하였다. 이 실험은 대역폭이 각각 0 - 4.5kHz 및 0.3 - 3.3kHz인 두가지 종류의 음성 데이타베이스를 사용하였다. 훈련과정에서 corrective training의 반복회수를 2로 하고 state transition duration 정보를 사용하였을 때, 0 - 4.5kHz 와 0.3 - 3.3kHz 대역폭에 대해 각각 98.8 % 및 98.2 % 의 최고 인식률을 얻었다. 이로부터 전화대역폭에서도 음성인식률은 크게 저하되지 않음을 알 수 있다.
The problems associated with gene identification and the prediction of gene structure in DNA sequences have been the focus of increased attention over the past few years with the recent acquisition by large-scale sequencing projects of an immense amount of genome data. A variety of prediction programs have been developed in order to address these problems. This paper presents a review of the computational approaches and gene-finders used commonly for gene prediction in eukaryotic genomes. Two approaches, in general, have been adopted for this purpose: similarity-based and ab initio techniques. The information gleaned from these methods is then combined via a variety of algorithms, including Dynamic Programming (DP) or the Hidden Markov Model (HMM), and then used for gene prediction from the genomic sequences.
Annual Conference on Human and Language Technology
/
2004.10d
/
pp.205-213
/
2004
음성인식기술을 실제 생활에 적용할 때 발생하는 대표적인 문제로, 인식기의 낮은 인식률로 인한 오동작을 들 수 있다. 본 연구에서는. 텔레뱅킹 도메인에서의 HTK(Hidden Markov Model Toolkit) 연속 음성 인식 시스템과, 최대 엔트로피 기법에 기반한 사용자 발화에서의 핵심이 되는 단어(주로 고유 명사들)들에 대한 인식 신뢰도의 측정 방법을 제시한다. 음향특징과 언어특징들을 모두 고려하여 인식 신뢰도를 구하였으며 인식된 단어들에 대해 오인식 되었음을 약 86%의 정확도로 판단할 수 있음을 확인하였다. 본 인식신뢰도를 이용하여 차후에 음성인식의 확인대화(Clarification Dialog)모델을 개발하는데 활용하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.