• Title/Summary/Keyword: Hidden layers

Search Result 251, Processing Time 0.028 seconds

Implementation of Hybrid Neural Network for Improving Learning ability and Its Application to Visual Tracking Control (학습 성능의 개선을 위한 복합형 신경회로망의 구현과 이의 시각 추적 제어에의 적용)

  • 김경민;박중조;박귀태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.12
    • /
    • pp.1652-1662
    • /
    • 1995
  • In this paper, a hybrid neural network is proposed to improve the learning ability of a neural network. The union of the characteristics of a Self-Organizing Neural Network model and of multi-layer perceptron model using the backpropagation learning method gives us the advantage of reduction of the learning error and the learning time. In learning process, the proposed hybrid neural network reduces the number of nodes in hidden layers to reduce the calculation time. And this proposed neural network uses the fuzzy feedback values, when it updates the responding region of each node in the hidden layer. To show the effectiveness of this proposed hybrid neural network, the boolean function(XOR, 3Bit Parity) and the solution of inverse kinematics are used. Finally, this proposed hybrid neural network is applied to the visual tracking control of a PUMA560 robot, and the result data is presented.

  • PDF

A multi-layed neural network learning procedure and generating architecture method for improving neural network learning capability (다층신경망의 학습능력 향상을 위한 학습과정 및 구조설계)

  • 이대식;이종태
    • Korean Management Science Review
    • /
    • v.18 no.2
    • /
    • pp.25-38
    • /
    • 2001
  • The well-known back-propagation algorithm for multi-layered neural network has successfully been applied to pattern c1assification problems with remarkable flexibility. Recently. the multi-layered neural network is used as a powerful data mining tool. Nevertheless, in many cases with complex boundary of classification, the successful learning is not guaranteed and the problems of long learning time and local minimum attraction restrict the field application. In this paper, an Improved learning procedure of multi-layered neural network is proposed. The procedure is based on the generalized delta rule but it is particular in the point that the architecture of network is not fixed but enlarged during learning. That is, the number of hidden nodes or hidden layers are increased to help finding the classification boundary and such procedure is controlled by entropy evaluation. The learning speed and the pattern classification performance are analyzed and compared with the back-propagation algorithm.

  • PDF

Prediction of Arc Welding Quality through Artificial Neural Network (신경망 알고리즘을 이용한 아크 용접부 품질 예측)

  • Cho, Jungho
    • Journal of Welding and Joining
    • /
    • v.31 no.3
    • /
    • pp.44-48
    • /
    • 2013
  • Artificial neural network (ANN) model is applied to predict arc welding process window for automotive steel plate. Target weldment was various automotive steel plate combination with lap fillet joint. The accuracy of prediction was evaluated through comparison experimental result to ANN simulation. The effect of ANN variables on the accuracy is investigated such as number of hidden layers, perceptrons and transfer function type. A static back propagation model is established and tested. The result shows comparatively accurate predictability of the suggested ANN model. However, it restricts to use nonlinear transfer function instead of linear type and suggests only one single hidden layer rather than multiple ones to get better accuracy. In addition to this, obvious fact is affirmed again that the more perceptrons guarantee the better accuracy under the precondition that there are enough experimental database to train the neural network.

Expanded PID Controller Using Double-Layers Neural Network In DC Servo System (DC서보계에서 2층신경망을 이용한 확대 PID 제어기)

  • 이정민;하홍곤
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.1
    • /
    • pp.88-94
    • /
    • 2001
  • In the position control system, the output of a controller is generally used as the input of a plant but the undesired noise is included in the output of a controller. Therefore, there is a need to use a precompensator for rejecting the undesired noise. In this paper, the expanded PID controller with a precompensator is constructed. The precompensator and PID controller are designed by a neural network with two-hidden layer and these coefficients are changed automatically to be a desired response of system when the response characteristic is changed under a condition.

  • PDF

Model Selection in Artificial Neural Network

  • Kim, Byung Joo
    • International journal of advanced smart convergence
    • /
    • v.7 no.4
    • /
    • pp.57-65
    • /
    • 2018
  • Artificial neural network is inspired by the biological neural network. For simplicity, in computer science, it is represented as a set of layers. Many research has been made in evaluating the number of neurons in the hidden layer but still, none was accurate. Several methods are used until now which do not provide the exact formula for calculating the number of thehidden layer as well as the number of neurons in each hidden layer. In this paper model selection approach was presented. Proposed model is based on geographical analysis of decision boundary. Proposed model selection method is useful when we know the distribution of the training data set. To evaluate the performance of the proposed method we compare it to the traditional architecture on IRIS classification problem. According to the experimental result on Iris data proposed method is turned out to be a powerful one.

Discernment of Android User Interaction Data Distribution Using Deep Learning

  • Ho, Jun-Won
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.143-148
    • /
    • 2022
  • In this paper, we employ deep neural network (DNN) to discern Android user interaction data distribution from artificial data distribution. We utilize real Android user interaction trace dataset collected from [1] to evaluate our DNN design. In particular, we use sequential model with 4 dense hidden layers and 1 dense output layer in TensorFlow and Keras. We also deploy sigmoid activation function for a dense output layer with 1 neuron and ReLU activation function for each dense hidden layer with 32 neurons. Our evaluation shows that our DNN design fulfills high test accuracy of at least 0.9955 and low test loss of at most 0.0116 in all cases of artificial data distributions.

Prediction of the Loading Characteristics by Neural Networks Using Structural Analysis of Composite Cylindrical Shells (복합재료 원통쉘의 구조해석을 이용한 신경회로망의 하중특성 추론에 관한 연구)

  • 명창문;이영신;서인석
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.137-146
    • /
    • 2002
  • The predictions of the loading characteristics was performed by the neural networks which use the results through structural analysis. The momentum backperpagtion which can be modified the teaming rate and momentum coefficient, was developed. Input patterns of the neural networks are the 9 strains which positioned at the side of the shell and output layers is the loading characteristics. Hidden layers were increased from 1 layers to 3 layers. Developed program which were trained by 9 strains predict the loading characteristics under 0.5%. Inverse engineering can be applicable to the composite laminated cylindrical shells with developed neural networks.

Estrus Detection in Sows Based on Texture Analysis of Pudendal Images and Neural Network Analysis

  • Seo, Kwang-Wook;Min, Byung-Ro;Kim, Dong-Woo;Fwa, Yoon-Il;Lee, Min-Young;Lee, Bong-Ki;Lee, Dae-Weon
    • Journal of Biosystems Engineering
    • /
    • v.37 no.4
    • /
    • pp.271-278
    • /
    • 2012
  • Worldwide trends in animal welfare have resulted in an increased interest in individual management of sows housed in groups within hog barns. Estrus detection has been shown to be one of the greatest determinants of sow productivity. Purpose: We conducted this study to develop a method that can automatically detect the estrus state of a sow by selecting optimal texture parameters from images of a sow's pudendum and by optimizing the number of neurons in the hidden layer of an artificial neural network. Methods: Texture parameters were analyzed according to changes in a sow's pudendum in estrus such as mucus secretion and expansion. Of the texture parameters, eight gray level co-occurrence matrix (GLCM) parameters were used for image analysis. The image states were classified into ten grades for each GLCM parameter, and an artificial neural network was formed using the values for each grade as inputs to discriminate the estrus state of sows. The number of hidden layer neurons in the artificial neural network is an important parameter in neural network design. Therefore, we determined the optimal number of hidden layer units using a trial and error method while increasing the number of neurons. Results: Fifteen hidden layers were determined to be optimal for use in the artificial neural network designed in this study. Thirty images of 10 sows were used for learning, and then 30 different images of 10 sows were used for verification. Conclusions: For learning, the back propagation neural network (BPN) algorithm was used to successful estimate six texture parameters (homogeneity, angular second moment, energy, maximum probability, entropy, and GLCM correlation). Based on the verification results, homogeneity was determined to be the most important texture parameter, and resulted in an estrus detection rate of 70%.

Image Enhancement Processing of the Digital Color to use in the Hard Copy (디지탈 칼라 이미지를 복제용원고로 사용하기 위한 이미지 강조처리)

  • 이중진
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.14 no.2
    • /
    • pp.1-20
    • /
    • 1996
  • we describes a method for realizing the color conversion from the tristimulus (X, Y, Z) values to the print ink signals (C, M, Y) by using neural networks. The realized nonlinear color conversion system consists of two hidden layers those have seventeen nodes. We determined the C, M, Y values of the input control signals to compensate the printer nonlinearity of real systems. Experimental results showed that the described method is useful and valid to realized the nonlinear color conversion.

  • PDF

Modular Fuzzy Neural Controller Driven by Voice Commands

  • Izumi, Kiyotaka;Lim, Young-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.32.3-32
    • /
    • 2001
  • This paper proposes a layered protocol to interpret voice commands of the user´s own language to a machine, to control it in real time. The layers consist of speech signal capturing layer, lexical analysis layer, interpretation layer and finally activation layer, where each layer tries to mimic the human counterparts in command following. The contents of a continuous voice command are captured by using Hidden Markov Model based speech recognizer. Then the concepts of Artificial Neural Network are devised to classify the contents of the recognized voice command ...

  • PDF