• 제목/요약/키워드: Hidden Node

검색결과 136건 처리시간 0.029초

Protein Disorder Prediction Using Multilayer Perceptrons

  • Oh, Sang-Hoon
    • International Journal of Contents
    • /
    • 제9권4호
    • /
    • pp.11-15
    • /
    • 2013
  • "Protein Folding Problem" is considered to be one of the "Great Challenges of Computer Science" and prediction of disordered protein is an important part of the protein folding problem. Machine learning models can predict the disordered structure of protein based on its characteristic of "learning from examples". Among many machine learning models, we investigate the possibility of multilayer perceptron (MLP) as the predictor of protein disorder. The investigation includes a single hidden layer MLP, multi hidden layer MLP and the hierarchical structure of MLP. Also, the target node cost function which deals with imbalanced data is used as training criteria of MLPs. Based on the investigation results, we insist that MLP should have deep architectures for performance improvement of protein disorder prediction.

ARIMA 모형과 인공신경망모형의 BOD예측력 비교 (Comparison of the BOD Forecasting Ability of the ARIMA model and the Artificial Neural Network Model)

  • 정효준;이홍근
    • 한국환경보건학회지
    • /
    • 제28권3호
    • /
    • pp.19-25
    • /
    • 2002
  • In this paper, the water quality forecast was performed on the BOD of the Chungju Dam using the ARIMA model, which is a nonlinear statistics model, and the artificial neural network model. The monthly data of water quality were collected from 1991 to 2000. The most appropriate ARIMA model for Chungju dam was found to be the multiplicative seasonal ARIMA(1,0,1)(1,0,1)$_{12}$, model. While the artificial neural network model, which is used relatively often in recent days, forecasts new data by the strength of a learned matrix like human neurons. The BOD values were forecasted using the back-propagation algorithm of multi-layer perceptrons in this paper. Artificial neural network model was com- posed of two hidden layers and the node number of each hidden layer was designed fifteen. It was demonstrated that the ARIMA model was more appropriate in terms of changes around the overall average, but the artificial neural net-work model was more appropriate in terms of reflecting the minimum and the maximum values.s.

Initialization of the Radial Basis Function Network Using Localization Method

  • Kim, Seong-Joo;Kim, Yong-Taek;Jeon, Hong-Tae;Seo, Jae-Yong;Cho, Hyun-Chan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.163.1-163
    • /
    • 2001
  • In this paper, we use time-frequency localization analysis method to analize the target function and the area of the target space. When we analize the function with the time and frequency axis simultaneously, the characteristic of the function is shown more precisely and the area is covered by a certain block. After we analize the target function in the time-frequency space, we can decide the activation functions and compose the hidden layer of the RBFN by choosing the radial basis function which can represent the characteristic of the target function, RBFN made by this method, designs the good structure proper to the target problem because we can decide the number of hidden node first.

  • PDF

학습 성능의 개선을 위한 복합형 신경회로망의 구현과 이의 시각 추적 제어에의 적용 (Implementation of Hybrid Neural Network for Improving Learning ability and Its Application to Visual Tracking Control)

  • 김경민;박중조;박귀태
    • 전자공학회논문지B
    • /
    • 제32B권12호
    • /
    • pp.1652-1662
    • /
    • 1995
  • In this paper, a hybrid neural network is proposed to improve the learning ability of a neural network. The union of the characteristics of a Self-Organizing Neural Network model and of multi-layer perceptron model using the backpropagation learning method gives us the advantage of reduction of the learning error and the learning time. In learning process, the proposed hybrid neural network reduces the number of nodes in hidden layers to reduce the calculation time. And this proposed neural network uses the fuzzy feedback values, when it updates the responding region of each node in the hidden layer. To show the effectiveness of this proposed hybrid neural network, the boolean function(XOR, 3Bit Parity) and the solution of inverse kinematics are used. Finally, this proposed hybrid neural network is applied to the visual tracking control of a PUMA560 robot, and the result data is presented.

  • PDF

음성인식 시스템에서의 음소분할기의 성능 (Performance of the Phoneme Segmenter in Speech Recognition System)

  • 이광석
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2009년도 추계학술대회
    • /
    • pp.705-708
    • /
    • 2009
  • 본 연구는 자연음성의 인식을 위하여 신경회로망을 기초로 한 음소 분할기에 대하여 기술하였다. 자연음성의 인식을 위한 음소 분할기의 입력으로는 16차 멜 스케일의 FFT, 정규화된 프레임 에너지, 0~3[KHz] 주파수 대역 및 그 이상의 대역에서의 에너지 비를 사용하였다. 모든 특징들은 두개의 연속적인 10[msec] 프레임의 차이며, 본 연구에 사용한 음소분할기는 하나의 72입력을 가지는 은닉층 퍼셉트론, 20은닉노드 및 하나의 출력노드로 구성하여 사용하였다. 자연음성에 대한 음소분할의 정확도는 7.8%삽입을 가지는 78%를 얻을 수 있었다.

  • PDF

Illumination correction via improved grey wolf optimizer for regularized random vector functional link network

  • Xiaochun Zhang;Zhiyu Zhou
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권3호
    • /
    • pp.816-839
    • /
    • 2023
  • In a random vector functional link (RVFL) network, shortcomings such as local optimal stagnation and decreased convergence performance cause a reduction in the accuracy of illumination correction by only inputting the weights and biases of hidden neurons. In this study, we proposed an improved regularized random vector functional link (RRVFL) network algorithm with an optimized grey wolf optimizer (GWO). Herein, we first proposed the moth-flame optimization (MFO) algorithm to provide a set of excellent initial populations to improve the convergence rate of GWO. Thereafter, the MFO-GWO algorithm simultaneously optimized the input feature, input weight, hidden node and bias of RRVFL, thereby avoiding local optimal stagnation. Finally, the MFO-GWO-RRVFL algorithm was applied to ameliorate the performance of illumination correction of various test images. The experimental results revealed that the MFO-GWO-RRVFL algorithm was stable, compatible, and exhibited a fast convergence rate.

웹에 숨겨진 악성코드 배포 네트워크에서 악성코드 전파 핵심노드를 찾는 방안 (A Method to Find the Core Node Engaged in Malware Propagation in the Malware Distribution Network Hidden in the Web)

  • 김성진
    • 융합보안논문지
    • /
    • 제23권2호
    • /
    • pp.3-10
    • /
    • 2023
  • 웹에 존재하는 악성코드 배포 네트워크에는 악성코드 배포를 위해 핵심 역할을 수행하는 중심 노드가 있다. 이노드를 찾아 차단하면 악성코드 전파를 효과적으로 차단할 수 있다. 본 연구에서는 복잡계 네트워크에서 위험 분석이 적용된 centrality 검색 방법을 제안하였고, 이 방식을 통해 악성코드 배포 네트워크 내에서 핵심노드를 찾는 방법을 소개한다. 그 외에, 정상 네트워크와 악성 네트워트는 in-degree와 out-degree 측면에서 큰 차이가 있고, 네트워크 레이아웃 측면에서도 서로 다르다. 이 특징을 통해 우리는 악성과 정상 네트워크를 분별할 수 있다.

시간-주파수 분석을 이용한 방사 기준 함수 구조의 최적화 (Optimization of the Radial Basis Function Network Using Time-Frequency Localization)

  • 김성주;김용택;조현찬;전홍태
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 추계학술대회 학술발표 논문집
    • /
    • pp.459-462
    • /
    • 2000
  • In this paper, we propose the initial optimized structure of the Radial Basis Function Network which is more simple in the part of the structure and converges more faster than Neural Network with the analysis method using Time-Frequency Localization. When we construct the hidden node with the Radial Basis Function whose localization is similar with an approximation target function in the plane of the Time and Frequency, we make a good decision of the initial structure having an ability of approximation.

  • PDF

신경망을 이용한 전문가 시스템의 구현 (An Implementation of Connectionist Expert System)

  • 권희선;김백섭;권호열;이상희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 A
    • /
    • pp.484-487
    • /
    • 1992
  • To resolve the knowledge acquisition bottleneck in the expert systems, the connectionist expert systems have been proposed, which facilitate learning capability of neural networks. This paper is to modify Gallant's connectionist expert network so that it can be applied to more general problems : 1) The hidden nodes are added between the input nodes and an output node, so that the back propagation learning algorithm is used instead of perception based Pocket algorithm. 2) Inference engine is thus modified by modeling that a node may have uncertainties due to unknown inputs.

  • PDF

에너지 균등 하이브리드 WSN 프로토콜 기반 국지 기상 관측 시스템 (A Weather Monitoring System for Local Area Using an Energy-balanced Hybrid WSN Protocol)

  • 이형봉;정태윤
    • 대한임베디드공학회논문지
    • /
    • 제9권4호
    • /
    • pp.193-203
    • /
    • 2014
  • This paper implements a weather monitoring system based on wireless sensor network. The wireless sensor network protocol proposed in this paper adopts a TDMA styled MAC. The protocol is designed to balance the energy consumption among sensor nodes. Other purposes of the protocol are to avoid the hidden terminal problem in 2-hop star topology, and to allow a CSMA styled communication in a given time slot to support emergent messages. Also, this paper develops the hardware of sensor node, gateway and electric generator based on solar and windy energy. The test results on the implemented system show that the time slot of each node is shifted in circular manner to balance the waiting time for transmission, and the reliability of wireless communication is over 99%.