• Title/Summary/Keyword: Hidden Markov Model Algorithm

Search Result 175, Processing Time 0.025 seconds

Vehicle trajectory prediction based on Hidden Markov Model

  • Ye, Ning;Zhang, Yingya;Wang, Ruchuan;Malekian, Reza
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3150-3170
    • /
    • 2016
  • In Intelligent Transportation Systems (ITS), logistics distribution and mobile e-commerce, the real-time, accurate and reliable vehicle trajectory prediction has significant application value. Vehicle trajectory prediction can not only provide accurate location-based services, but also can monitor and predict traffic situation in advance, and then further recommend the optimal route for users. In this paper, firstly, we mine the double layers of hidden states of vehicle historical trajectories, and then determine the parameters of HMM (hidden Markov model) by historical data. Secondly, we adopt Viterbi algorithm to seek the double layers hidden states sequences corresponding to the just driven trajectory. Finally, we propose a new algorithm (DHMTP) for vehicle trajectory prediction based on the hidden Markov model of double layers hidden states, and predict the nearest neighbor unit of location information of the next k stages. The experimental results demonstrate that the prediction accuracy of the proposed algorithm is increased by 18.3% compared with TPMO algorithm and increased by 23.1% compared with Naive algorithm in aspect of predicting the next k phases' trajectories, especially when traffic flow is greater, such as this time from weekday morning to evening. Moreover, the time performance of DHMTP algorithm is also clearly improved compared with TPMO algorithm.

On-Line Character Recognition using Hidden Markov Model and Genetic Algorithm (Hidden Markov Model 과 Genetic Algorithm을 이용한 온라인 문자인식에 관한 연구)

  • 홍영표;장춘서
    • Proceedings of the IEEK Conference
    • /
    • 2000.11c
    • /
    • pp.29-32
    • /
    • 2000
  • HMM(Hidden Markov Model)은 시간적인 정보를 토대로 하는 수학적인 방법으로서 문자인식에 많이 사용되어지고 있다. 그런데 HMM이 적용되고자 하는 문제에서 사용되어지는 상태 수와 HMM에서 사용되어지는 parameter들은 처음에 결정되는 값들에 의해서 상당히 많은 영향을 받게 된다. 따라서 한글의 특성을 이용한 HMM의 상태 수를 결정한 후 결정되어진 각각의 HMM parameter들을 Genetic Algorithm을 이용하였다. Genetic Algorithm은 매개변수 최적화 문제에 대하여 자연의 진화 원리를 마땅한 알고리즘으로 선택, 교배, 돌연변이 연산을 이용하여 최적의 개체를 구하게 된다. 여기서는 HMM에서의 Viterbi Algorithm을 적합도 검사에 사용하였다.

  • PDF

Two-Dimensional Model of Hidden Markov Mesh

  • Sin, Bong-Kee
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.772-779
    • /
    • 2006
  • The new model proposed in this paper is the hidden Markov mesh model or the 2D HMM with the causality of top-down and left-right direction. With the addition of the causality constraint, two algorithms for the evaluation of a model and the maximum likelihood estimation of model parameters have been developed theoretically which are based on the forward-backward algorithm. It is a more natural extension of the 1D HMM than other 2D models. The proposed method will provide a useful way of modeling highly variable image patterns such as offline cursive characters.

  • PDF

Hand Gesture Recognition Using HMM(Hidden Markov Model) (HMM(Hidden Markov Model)을 이용한 핸드 제스처인식)

  • Ha, Jeong-Yo;Lee, Min-Ho;Choi, Hyung-Il
    • Journal of Digital Contents Society
    • /
    • v.10 no.2
    • /
    • pp.291-298
    • /
    • 2009
  • In this paper we proposed a vision based realtime hand gesture recognition method. To extract skin color, we translate RGB color space into YCbCr color space and use CbCr color for the final extraction. To find the center of extracted hand region we apply practical center point extraction algorithm. We use Kalman filter to tracking hand region and use HMM(Hidden Markov Model) algorithm (learning 6 type of hand gesture image) to recognize it. We demonstrated the effectiveness of our algorithm by some experiments.

  • PDF

A Probabilistic Tracking Mechanism for Luxury Purchase Implemented by Hidden Markov Model, Bayesian Inference, Customer Satisfaction and Net Promoter Score (고객만족, NPS, Bayesian Inference 및 Hidden Markov Model로 구현하는 명품구매에 관한 확률적 추적 메카니즘)

  • Hwang, Sun Ju;Rhee, Jung Soo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.6
    • /
    • pp.79-94
    • /
    • 2018
  • The purpose of this study is to specify a probabilistic tracking mechanism for customer luxury purchase implemented by hidden Markov model, Bayesian inference, customer satisfaction and net promoter score. In this paper, we have designed a probabilistic model based on customer's actual data containing purchase or non-purchase states by tracking the SPC chain : customer satisfaction -> customer referral -> purchase/non-purchase. By applying hidden Markov model and Viterbi algorithm to marketing theory, we have developed the statistical model related to probability theories and have found the best purchase pattern scenario from customer's purchase records.

Improved Automatic Lipreading by Stochastic Optimization of Hidden Markov Models (은닉 마르코프 모델의 확률적 최적화를 통한 자동 독순의 성능 향상)

  • Lee, Jong-Seok;Park, Cheol-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.14B no.7
    • /
    • pp.523-530
    • /
    • 2007
  • This paper proposes a new stochastic optimization algorithm for hidden Markov models (HMMs) used as a recognizer of automatic lipreading. The proposed method combines a global stochastic optimization method, the simulated annealing technique, and the local optimization method, which produces fast convergence and good solution quality. We mathematically show that the proposed algorithm converges to the global optimum. Experimental results show that training HMMs by the method yields better lipreading performance compared to the conventional training methods based on local optimization.

HMM Based Endpoint Detection for Speech Signals

  • Lee Yonghyung;Oh Changhyuck
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2001.11a
    • /
    • pp.75-76
    • /
    • 2001
  • An endpoint detection method for speech signals utilizing hidden Markov model(HMM) is proposed. It turns out that the proposed algorithm is quite satisfactory to apply isolated word speech recognition.

  • PDF

Phoneme-based Recognition of Korean Speech Using HMM(Hidden Markov Model) and Genetic Algorithm (HMM과 GA를 이용한 한국어 음성의 음소단위 인식)

  • 박준하;조성원
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.291-295
    • /
    • 1997
  • 현재에 주로 개발되어 상용화가 시작되고 있는 음성인식 시스템의 대부분은 단어인식을 기분으로 하는 시스템으로 적용 단어수를 늘려줌으로서 인식범위를 늘일 수 있으나, 그에 따라 검색해야하는 단어수가 늘어남으로서 전체적인 시스템의 속도 및 성능이 저하되는 경향이 있다. 이러한 단점의 극복을 위하여 본 논문에서는 HMM(Hidden Markov Model)과 GA(Genetic Algorithm)를 이용한 한국어 음성의 음소단위 인식 시스템을 구현하였다. 음성 특징으로는 LPC Cepstrum 계수를 사용하였으며, 인식시는 인식대상이 되는 단어에 대하여 GA(Genetic Algorithm)을 통하여 각 음소를 분리하고, 음소단위로 학습된 HMM 파라미터를 적용하여 인식함으로써 각각의 음소별 가능하도록 하는 방법을 제안하였다.

  • PDF

A Study on the Quality Estimation of Resistance Spot Welding Using Hidden Markov Model (은닉 마르코프 모델을 이용한 저항 점용접 품질 추정에 관한 연구)

  • 김경일;최재성
    • Journal of Welding and Joining
    • /
    • v.20 no.6
    • /
    • pp.45-45
    • /
    • 2002
  • This study is a middle report on the development of intelligent spot welding monitoring technology applicable to the production line. An intelligent algorithm has been developed to predict the quality of welding in real time. We examined whether it is effective or not through the In-Line and the Off-Line tests. The purpose of the present study is to provide a reliable solution which can prevent welding defects in production site. In this study, the process variables, which were monitored in the primary circuit of the welding, are used to estimate the weld quality by Hidden Markov Model(HMM). The primary dynamic resistance patterns are recognized and the quality is estimated in probability method during the welding. We expect that the algorithm proposed in the present study is feasible to the applied in the production sites for the purpose of in-process real time quality monitoring of spot welding.

A Study on the Quality Estimation of Resistance Spot Welding Using Hidden Markov Model (은닉 마르코프 모델을 이용한 저항 점용접 품질 추정에 관한 연구)

  • 김경일;최재성
    • Journal of Welding and Joining
    • /
    • v.20 no.6
    • /
    • pp.769-775
    • /
    • 2002
  • This study is a middle report on the development of intelligent spot welding monitoring technology applicable to the production line. An intelligent algorithm has been developed to predict the quality of welding in real time. We examined whether it is effective or not through the In-Line and the Off-Line tests. The purpose of the present study is to provide a reliable solution which can prevent welding defects in production site. In this study, the process variables, which were monitored in the primary circuit of the welding, are used to estimate the weld quality by Hidden Markov Model(HMM). The primary dynamic resistance patterns are recognized and the quality is estimated in probability method during the welding. We expect that the algorithm proposed in the present study is feasible to the applied in the production sites for the purpose of in-process real time quality monitoring of spot welding.