• Title/Summary/Keyword: Hf-oxide

Search Result 255, Processing Time 0.026 seconds

Characteristics of Silicon Rich Oxide by PECVD (PECVD에 의한 Sirich 산화막의 특성)

  • Gang, Seon-Hwa;Lee, Sang-Gyu;Park, Hong-Rak;Go, Cheol-Gi;Choe, Su-Han
    • Korean Journal of Materials Research
    • /
    • v.3 no.5
    • /
    • pp.459-465
    • /
    • 1993
  • By making the inter-metal PECVD $SiO_2$ as a Si rich oxide under the SOG, the hydrogen and water related diffusants could be captured a t SI dangling bonds. This gettering process was known to prevent the device characteristics degradations related to the H, $H_20$. The basic characteristics of Si rich oxide have been studied according to changing high/low frequency power and $SiH_4/N_2O$ gas flow ratio in PECVD. As increase in low frequency power, deposition rate decreased but K.I. and compressive stress increased. Decrease of the water peaks of FTIR spectra at the wave number range of 3300~3800$\textrm{cm}^{-1}$' also indicated that intensty the films were densified. As increase in SiH, gas flow rate, deposition rate, R.I. and etch rate increased while compressive stress decreased. F'TIK spectra showed that peak intensity corresponding to Si-0-Si stretching vibration decreased and shifted to the lower wave numbers. But AES showed that Si dangl~ng bonds were increased as a result of lower Si:O(l: 1.23) ratlo inthe Si rich oxide as compared to Si : O(1 : 1.98) ratio of usual oxide.

  • PDF

Influence of carrier suppressors on electrical properties of solution-derived InZnO-based thin-film transistors

  • Sim, Jae-Jun;Park, Sang-Hui;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.262-262
    • /
    • 2016
  • 최근 고해상도 디스플레이가 주목받으면서 기존 비정질 실리콘(a-Si)을 대체할 수 있는 재료에 관한 연구가 활발히 진행되고 있다. a-Si의 경우 간단한 공정 과정, 적은 생산비용, 대면적화가 가능하다는 장점이 있지만 전자 이동도가 매우 낮은 단점이 있다. 반면, 산화물 반도체는 비정질 상태에서 전자 이동도가 높으며 큰 밴드갭을 가지고 있어 투명한 특성을 나타낼 뿐만 아니라, 저온공정이 가능하여 기판의 제한이 없는 장점을 가지고 있다. 대표적으로 가장 널리 연구되고 있는 산화물 반도체는 a-IGZO(amorphous indium-gallium-zinc oxide)이다. 그러나 InZnO(IZO) 기반의 산화물 반도체에서 carrier suppressor 역할을 하는 Ga(gallium)은 수요에 대한 공급이 원활하지 못하여 비싸다는 단점이 있다. 그러므로 경제적이면서 a-IGZO와 유사한 전기적 특성을 나타낼 수 있는 suppressor 물질이 필요하다. 따라서 본 연구에서는 IZO 기반의 산화물 반도체에서 Ga을 Hf(hafnium), Zr(zirconium), Si(silicon)으로 대체하여 용액증착(solution-deposition) 공정으로 각각의 채널층을 형성한 back-gate type의 박막 트랜지스터(thin-film transistor, TFT) 소자를 제작하였다. 용액증착 공정은 물질의 비율을 자유롭게 조절할 수 있고, 대기압의 조건에서도 공정이 가능하기 때문에 짧은 공정시간과 저비용의 장점이 있다. 제작된 소자는 p-type Si 위에 게이트 절연막으로 100 nm의 열산화막이 성장된 기판을 사용하였다. 표준 RCA 클리닝 후에 각 solution 물질을 spin coating 방식으로 증착하였다. 이후, photolithography, develop, wet etching의 과정을 거쳐 채널층 패턴을 형성하였다. 또한, 산화물 반도체의 전기적 특성을 향상시키기 위해서 후속 열처리 과정(post deposition annealing, PDA)은 필수적이다. CTA 방식은 높은 열처리 온도와 긴 열처리 시간의 단점이 있다. 따라서, 본 연구에서는 $100^{\circ}C$ 이하의 낮은 온도와 짧은 열처리 시간의 장점을 가지는 MWI (microwave irradiation)를 후속 열처리로 진행하였다. 그 결과, 각 물질로 구현된 소자들은 기존 a-IGZO와 비교하여 적은 양의 carrier suppressor로도 우수한 전기적 특성 및 안정성을 얻을 수 있었다. 따라서, Si, Hf, Zr 기반의 산화물 반도체는 기존의 Ga을 대체하여 저비용으로 디스플레이를 구현할 수 있는 IZO 기반 재료로 기대된다.

  • PDF

Effect of surface treatments and universal adhesive application on the microshear bond strength of CAD/CAM materials

  • Sismanoglu, Soner;Gurcan, Aliye Tugce;Yildirim-Bilmez, Zuhal;Turunc-Oguzman, Rana;Gumustas, Burak
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.1
    • /
    • pp.22-32
    • /
    • 2020
  • PURPOSE. The aim of this study was to evaluate the microshear bond strength (µSBS) of four computer-aided design/computer-aided manufacturing (CAD/CAM) blocks repaired with composite resin using three different surface treatment protocols. MATERIALS AND METHODS. Four different CAD/CAM blocks were used in this study: (1) flexible hybrid ceramic (FHC), (2) resin nanoceramic (RNC), (c) polymer infiltrated ceramic network (PICN) and (4) feldspar ceramic (FC). All groups were further divided into four subgroups according to surface treatment: control, hydrofluoric acid etching (HF), air-borne particle abrasion with aluminum oxide (AlO), and tribochemical silica coating (TSC). After surface treatments, silane was applied to half of the specimens. Then, a silane-containing universal adhesive was applied, and specimens were repaired with a composite, Next, µSBS test was performed. Additional specimens were examined with a contact profilometer and scanning electron microscopy. The data were analyzed with ANOVA and Tukey tests. RESULTS. The findings revealed that silane application yielded higher µSBS values (P<.05). All surface treatments were showed a significant increase in µSBS values compared to the control (P<.05). For FHC and RNC, the most influential treatments were AlO and TSC (P<.05). CONCLUSION. Surface treatment is mandatory when the silane is not preferred, but the best bond strength values were obtained with the combination of surface treatment and silane application. HF provides improved bond strength when the ceramic content of material increases, whereas AlO and TSC gives improved bond strength when the composite content of material increases.

Microwave Irradiation에 따른 용액 공정에 의한 HfOx 기반의 MOS Capacitor의 전기적 특성 평가

  • Jang, Gi-Hyeon;O, Se-Man;Park, Jeong-Hun;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.358-358
    • /
    • 2014
  • 인간과 기기간의 상호작용 심화에 의하여 모든 기기의 지능화, 첨단화 등이 요구됨에 따라 정보 기술 및 디스플레이 기술의 개발이 활발히 이루어지고 있는 가운데 투명 전자 소자에 대한 연구가 급증하고 있다. 산화물 반도체는 가시광 영역에서 투명하고, 비정질 반도체에 비하여 이동도가 100 배 이상 크고, 결정화 공정을 거친 폴리 실리콘과 비슷한 값을 가지거나 조금 낮으며 유연한 소자에도 쉽게 적용이 가능하다는 장점을 가지고 있어 투명 전자 소자 제작시에 주로 이용되는 물질이다. 대부분의 산화물 반도체 박막 증착 방법은 스퍼터링 방법이나 유기금속 화학증착법과 같은 방법으로 막을 형성하는데 이러한 증착 방법들은 고품질의 박막을 성장시킬 수 있다는 장점이 있으나 고가의 진공장비 및 부대 시설이 이용되고 이로 인한 제조비용의 상승이 되고, 기판 선택에 제약이 있는 단점이 있다. 따라서, 이러한 문제점을 개선하기 위하여 고가의 진공 장비가 필요 없이 스핀 코팅 방법이나 딥핑 방법 등에 의하여 공정 단계의 간소화, 높은 균일성, 기판 종류에 상관없는 소자의 대면적화가 가능한 용액 공정 기술이 각광을 받고 있다. 그러나 용액 공정 기반의 박막을 형성하기 위해서는 비교적 높은 공정온도 혹은 압력 등의 외부 에너지를 필요로 하므로 열에 약한 유리 기판이나 유연한 기판에 적용하기가 어렵다. 최근 이러한 문제점을 해결하기 위하여 높은 온도의 열처리(thermal annealing) 를 대신 할 수 있는 microwave irradiation (MWI)에 대한 연구가 보고되고 있다. MWI는 $100^{\circ}C$ 이하에서의 저온 공정이 가능하여 높은 공정 온도에 대한 문제점을 해결할 뿐만 아니라 열처리 방향을 선택적으로 할 수 있다는 장점을 가지고 있어 현재 투명 디스플레이 분야에서 주로 이용되고 있다. 따라서 본 연구에서는 HfOx 기반의 metal-oxide-semiconductor (MOS) capacitor를 제작하여 MWI에 따른 전기적 특성을 평가하였다. MWI는 금속의 증착 전과 후, 그리고 시간에 따른 조건을 적용하였으며 최적화된 조건의 MWI은 일반적인 퍼니스 장비에서의 높은 온도 열처리에 준하는 우수한 전기적 특성을 확인하였다.

  • PDF

Orthodontic bracket bonding to glazed full-contour zirconia

  • Kwak, Ji-Young;Jung, Hyo-Kyung;Choi, Il-Kyung;Kwon, Tae-Yub
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.2
    • /
    • pp.106-113
    • /
    • 2016
  • Objectives: This study evaluated the effects of different surface conditioning methods on the bond strength of orthodontic brackets to glazed full-zirconia surfaces. Materials and Methods: Glazed zirconia (except for the control, Zirkonzahn Prettau) disc surfaces were pre-treated: PO (control), polishing; BR, bur roughening; PP, cleaning with a prophy cup and pumice; HF, hydrofluoric acid etching; AA, air abrasion with aluminum oxide; CJ, CoJet-Sand. The surfaces were examined using profilometry, scanning electron microscopy, and electron dispersive spectroscopy. A zirconia primer (Z-Prime Plus, Z) or a silane primer (Monobond-S, S) was then applied to the surfaces, yielding 7 groups (PO-Z, BR-Z, PP-S, HF-S, AA-S, AA-Z, and CJ-S). Metal bracket-bonded specimens were stored in water for 24 hr at $37^{\circ}C$, and thermocycled for 1,000 cycles. Their bond strengths were measured using the wire loop method (n = 10). Results: Except for BR, the surface pre-treatments failed to expose the zirconia substructure. A significant difference in bond strengths was found between AA-Z ($4.60{\pm}1.08MPa$) and all other groups ($13.38{\pm}2.57-15.78{\pm}2.39MPa$, p < 0.05). For AA-Z, most of the adhesive remained on the bracket. Conclusions: For bracket bonding to glazed zirconia, a simple application of silane to the cleaned surface is recommended. A zirconia primer should be used only when the zirconia substructure is definitely exposed.

Beneficial Effect of Rubus Coreanus Miq in a Rat Model of High Fructose Diet-induced Metabolic Syndrome (고과당식이 랫드모델에서 복분자 투여에 의한 대사증후군 개선효과)

  • Kho, Min Chul;Lee, Yun Jung;Yoon, Jung Joo;Kang, Dae Gill;Lee, Ho Sub
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.29 no.1
    • /
    • pp.11-17
    • /
    • 2015
  • Overconsumption of fructose results in dyslipidemia, hypertension, which have documented as a risk of cardiovascular diseases. This experimental study was designed to investigate the beneficial effects of Rubus coreanus Miq.(RCM) in high-fructose diet-induced metabolic syndrome. Animals were divided into three groups; Control group fed regular diet and tap water, fructose groups were fed the 65% high-fructose (HF) diet with/without RCM 100 mg/kg/day for 8 weeks, respectively. Chronic treatment with RCM significantly decreased body weight, fat weight and adipocyte size. Moreover, RCM significantly prevented the development of the metabolic disturbances such as hyperlipidemia and hypertension. RCM also led to increase in high density lipoprotein level in the HF group. In addition, RCM suppressed vascular cell adhesion molecule-1 (VCAM-1) expression and significantly recovered the levels of endothelial nitric oxide synthase (eNOS) expression in aorta. These results demonstrates that RCM may be a beneficial therapeutic for metabolic syndrome through the improvement of hyperlipidemia, obesity, and hypertension.

Impact of Residual Hydrofluoric Acid on Leaching of Minerals and Arsenic from Different Types of Geological Media (잔류 불산에 의한 모델 지질토양시료의 광물 용해 및 비소 용출 특성)

  • Jeon, Pilyong;Moon, Hee Sun;Shin, Doyun;Hyun, Sung Pil
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.2
    • /
    • pp.23-29
    • /
    • 2018
  • This study explored secondary effects of the residual hydrofluoric acid (HF) after a hypothetical acid spill accident by investigating the long-term dissolution of minerals and leaching of pre-existing arsenic (As) from two soil samples (i.e., KBS and KBM) through batch and column experiments. An increase in the HF concentration in both soil samples resulted in a dramatic increase in the release of major cations, especially Si. However, the amounts of mineral dissolved were dependent on the soil type and mineral characteristics. Compared to the KBM soil, relatively more Ca, Mg and Si were dissolved from the KBS soil. The column experiment showed that the long-term dissolution rates of the minerals are closely associated with the acid buffering capacity of the two soils. The KBM soil had relatively higher effluent pH values compared to the KBS soil. Also, more As was leached from the KBM soil, with a more amorphous hydrous oxide-bound As fraction. These results suggest that the potential of heavy metal leaching by the residual acid after an acid spill will be influenced by heavy metal speciation and mineral structure in the affected soil.

Quality Characteristics and Antioxidant Activity of Prickly Pear Cactus Cladodes (손바닥 선인장 엽상경의 품질 특성과 항산화 효과)

  • Hwang, Joon-Ho;Yi, Mi-Ran;Kim, Jae-Won;Bu, Hee-Jung;Kang, Chang-Hee;Lim, Sang-Bin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.3
    • /
    • pp.356-362
    • /
    • 2015
  • Prickly pear cactus cladodes were extracted with hot water and 70% ethanol, followed by fractionation with n-hexane (HF), ethyl acetate (EF), n-butanol (BF), and distilled water. Total phenolics and total flavonoid contents as well as antioxidative and anti-inflammatory activities were then measured. Total phenolic contents were 784, 452, and 220 mg gallic acid equivalents (GAE)/g, whereas total flavonoid contents were 214, 76, and 113 mg quercetin equivalents (QE)/g in EF, BF, and HF, respectively. DPPH and ABTS radical scavenging activities ($IC_{50}$) were 103 and $105{\mu}g/mL$ in EF, 359 and $379{\mu}g/mL$ in BF, and 469 and $605{\mu}g/mL$ in HF, respectively. Oxygen radical absorbance capacity was highest at $391{\mu}M$ TE in EF (in decreasing order of $117{\mu}M$ TE in BF and $64{\mu}M$ TE in HF), whereas superoxide anion radical scavenging activity ($IC_{50}$) was highest at $40{\mu}g/mL$ in EF (in decreasing order of $69{\mu}g/mL$ in BF and $98{\mu}g/mL$ in 70% ethanol extract). Inhibitory activity ($IC_{50}$) of nitric oxide (NO) production induced by LPS-activated RAW264.7 cells was highest at $62{\mu}g/mL$ in HF (in decreasing order of $104{\mu}g/mL$ in EF and $465{\mu}g/mL$ in BF). The selectivity index (ratio of inhibitory activity of NO production to cell cytotoxicity) was highest at 4.63 in EF (in decreasing order of 3.37 in HF and 2.14 in BF). In conclusion, EF showed potent antioxidant and anti-inflammatory effects with high phenolic and flavonoid contents.

A STUDY OF SHEAR BOND STRENGTH AND SURFACE CONDITION BETWEEN SURFACE TREATED PORCELAIN AND RESIN CEMENT (도재의 표면처리에 따른 레진시멘트와의 전단결합강도 및 표면상태에 관한 연구)

  • Park, Sang-Hyuck;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.1
    • /
    • pp.144-155
    • /
    • 1997
  • This study evaluated shear bond strength between porcelain and resin cement according to various surface treatments of porcelain, and surface condition of debonded porcelain. 50 porcelain specimens(Celay block A2M7) and composite resin specimens(Clearfil Photo-Bright) were prepared, and divided into 5 experimental groups according to the treatment method of porcelain surface. 5 experimental groups by surface treatments were as follows; CONTROL Group : No surface treatment was done on the surface of porcelains. SAND Group : The surface of porcelains were sandblasted with $50{\mu}m$ aluminum oxide for 5 seconds. HF Group: The surface of porcelains were etched with 8% Hydrofluoric acid for 4 minutes. SIL Group: The surface of porcelains were coated with silane coupling agent and heated at $100^{\circ}C$ for 5 minutes. SAND+HF+SIL Group : The surface of porcelains were sandblasted with $50{\mu}m$ aluminum oxide for 5 seconds and etched with 8% Hydrofluoric acid for 4 minutes, and coated with silane coupling agent and heated at $100^{\circ}C$ for 5 minutes. After surface treatments on the prepared porcelain surface two pastes of Panavia 21$^{(R)}$ were mixed, they were applied between composite resin block and porcelain surface, and then excessive resin cements were removed, and its margin was surrounded with Oxyguard II. All specimens were stored for 24 hours in water at $37^{\circ}C$ and tested with Instron testing machine between porcelains and resin cements, and debonded porcelain surfaces were observed under Scanning Electon Microscope(Hitachi S-2300) at 20kvp. The values from each group were compared statistically by Student's t-test. The obtained results were as follows; 1. The shear bond strength without surface treatment of porcelain was the lowest among all experimental groups(p<0.05). 2. The detached porcelain surface with sandblasting alone had more remarkable cracks than with only Hydrofluoric Acid or Silane coupling 2gent, but showed the lowest value of shear bond strength among surface treated groups(p<0.05), 3. When porcelain surface was treated by hydrofluoric acid, it affected shear bond strength more than silane coupling agent, but there were no significant statistical differences(p>0.05). 4. When three methods were combined to increase shear bond strength between porcelains and resin cements, its value was the highest than the others(p<0.05). 5. In Scannig Electron Micrograph of detached porcelain surface with no treatment, the sample revealed adhesive failure between the porcelain and resin cement whereas detached porcelain surface with combination of three method cohesive failure on the porcelain.

  • PDF

Surface Modification of Li Metal Electrode with PDMS/GO Composite Thin Film: Controlled Growth of Li Layer and Improved Performance of Lithium Metal Battery (LMB) (PDMS/GO 복합체 박막의 리튬 금속 표면 개질: 리튬전극의 성장 제어 및 리튬금속전지(LMB) 성능 향상)

  • Lee, Sanghyun;Seok, Dohyeong;Jeong, Yohan;Sohn, Hiesang
    • Membrane Journal
    • /
    • v.30 no.1
    • /
    • pp.38-45
    • /
    • 2020
  • Although Lithium metal battery (LMB) has a very large theoretical capacity, it has a critical problem such as formation of dendrite which causes short circuit and short cycle life of the LMB. In this study, PDMS/GO composite with evenly dispersed graphene oxide (GO) nanosheets in poly (dimethylsiloxane) (PDMS) was synthesized and coated into a thin film, resulting in the effect that can physically suppress the formation of dendrite. However, PDMS has low ion conductivity, so that we attained improved ion conductivity of PDMS/GO thin film by etching technic using 5wt% hydrofluoric acid (HF), to facilitate the movement of lithium (Li) ions by forming the channel of Li ions. The morphology of the PDMS/GO thin film was observed to confirm using SEM. When the PDMS/GO thin film was utilized to lithium metal battery system, the columbic efficiency was maintained at 87.4% on average until the 100th cycles. In addition, voltage profiles indicated reduced overpotential in comparison to the electrode without thin film.