• 제목/요약/키워드: Hf-free Zr

검색결과 4건 처리시간 0.016초

Electrorefining of CuZr Alloy Using Ba2ZrF8-LiF Electrolyte

  • Lee, Seong Hun;Choi, Jeong Hun;Yoo, Bung Uk;Lee, Jong Hyeon
    • 한국재료학회지
    • /
    • 제27권12호
    • /
    • pp.672-678
    • /
    • 2017
  • In the production of zirconium cladding tube, a pickling acid solution is used to remove surface contaminants, which generates tons of pickling acid waste. The waste pickling solution is a valuable resource of Hf-free Zr. Many studies have investigated separating the Hf-free Zr source from the waste pickling acid. The results showed that $Ba_2ZrF_8$ precipitates prepared from the waste pickling acid were useful as an electrolyte for the electrorefining of Zr in molten salt. In the present work, electrorefining was performed in a $Ba_2ZrF_8-LiF$ binary electrolyte to recover Zr from a Hf-free CuZr ingot anode prepared by electroreduction. Before electrorefining, two pretreatments are performed. First, electrolyte melting was carried out to determine the eutectic temperature, and second, the electrolyte was treated to eliminate impurities, mainly hydride. After electrorefining, the cathode deposits were analyzed by $O_2$ gas analyzer and SEM-EDX to explore the possibility of recovering nuclear-grade Zr metal. Moreover, the anode was analyzed by SEM-EDX to determine the Zr dissolution depth.

지르코늄의 제조(製造)와 재활용기술(再活用技術) (Overview of Zirconium Production and Recycling Technology)

  • 박경태;김승현;홍순익;최미선;조남찬;유환준;이종현
    • 자원리싸이클링
    • /
    • 제21권5호
    • /
    • pp.18-30
    • /
    • 2012
  • Zr은 고온에서의 높은 치수안정성, 내식성은 물론 낮은 중성자 흡수단면적을 지녀 원자력산업용 소재 중 1차 방사능 차폐재인 핵연료 피복관으로 사용되며 현재까지 다른 소재로 대체 불가능하다. 하지만 Hf을 정제한 Zr sponge 제조기술은 미국, 프랑스, 러시아만 가지고 있어 원자력의존도가 높은 한국에서는 국가전략물자로 분류 철저히 관리되고 있다. 국내 유통되는 Zr의 대부분은 원자력산업에 사용되어 지며 유통구조는 정제된 Zr합금을 국외로부터 수입하여 tube로 가공 후 핵연료집합체로 제조되고, 그 외 소량이 합금첨가원소 및 폭약재 등 고부가가치 일반산업에 사용된다. 본 논문에서는 Zr 제조기술에 대한 현재산업현황 및 정련기술을 살펴보고, 최근 연구되고 있는 Electrolytic reduction process와 Molten oxide electrolysis와 같은 신 제련기술에 대한 소개 및 Zr recycling의 전반적인 기술소개도 포함하였다.

A Review of Epitaxial Metal-Nitride Films by Polymer-Assisted Deposition

  • Luo, Hongmei;Wang, Haiyan;Zou, Guifu;Bauer, Eve;Mccleskey, Thomas M.;Burrell, Anthony K.;Jia, Quanxi
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권2호
    • /
    • pp.54-60
    • /
    • 2010
  • Polymer-assisted deposition is a chemical solution route to high quality thin films. In this process, the polymer controls the viscosity and binds metal ions, resulting in a homogeneous distribution of metal precursors in the solution and the formation of crack-free and uniform films after thermal treatment. We review our recent effort to epitaxially grow metal-nitride thin films, such as hexagonal GaN, cubic TiN, AlN, NbN, and VN, mixed-nitride $Ti_{1-x}Al_xN$, ternary nitrides tetragonal $SrTiN_2$, $BaZrN_2$, and $BaHfN_2$, hexagonal $FeMoN_2$, and nanocomposite TiN-$BaZrN_2$.

저온 공정 온도에서 $Al_2O_3$ 게이트 절연물질을 사용한 InGaZnO thin film transistors

  • 우창호;안철현;김영이;조형균
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.11-11
    • /
    • 2010
  • Thin-film-transistors (TFTs) that can be deposited at low temperature have recently attracted lots of applications such as sensors, solar cell and displays, because of the great flexible electronics and transparent. Transparent and flexible transistors are being required that high mobility and large-area uniformity at low temperature [1]. But, unfortunately most of TFT structures are used to be $SiO_2$ as gate dielectric layer. The $SiO_2$ has disadvantaged that it is required to high driving voltage to achieve the same operating efficiency compared with other high-k materials and its thickness is thicker than high-k materials [2]. To solve this problem, we find lots of high-k materials as $HfO_2$, $ZrO_2$, $SiN_x$, $TiO_2$, $Al_2O_3$. Among the High-k materials, $Al_2O_3$ is one of the outstanding materials due to its properties are high dielectric constant ( ~9 ), relatively low leakage current, wide bandgap ( 8.7 eV ) and good device stability. For the realization of flexible displays, all processes should be performed at very low temperatures, but low temperature $Al_2O_3$ grown by sputtering showed deteriorated electrical performance. Further decrease in growth temperature induces a high density of charge traps in the gate oxide/channel. This study investigated the effect of growth temperatures of ALD grown $Al_2O_3$ layers on the TFT device performance. The ALD deposition showed high conformal and defect-free dielectric layers at low temperature compared with other deposition equipments [2]. After ITO was wet-chemically etched with HCl : $HNO_3$ = 3:1, $Al_2O_3$ layer was deposited by ALD at various growth temperatures or lift-off process. Amorphous InGaZnO channel layers were deposited by rf magnetron sputtering at a working pressure of 3 mTorr and $O_2$/Ar (1/29 sccm). The electrodes were formed with electron-beam evaporated Ti (30 nm) and Au (70 nm) bilayer. The TFT devices were heat-treated in a furnace at $300^{\circ}C$ and nitrogen atmosphere for 1 hour by rapid thermal treatment. The electrical properties of the oxide TFTs were measured using semiconductor parameter analyzer (4145B), and LCR meter.

  • PDF