DOI QR코드

DOI QR Code

A Review of Epitaxial Metal-Nitride Films by Polymer-Assisted Deposition

  • Luo, Hongmei (Department of Chemical Engineering, New Mexico State University) ;
  • Wang, Haiyan (Department of Electrical and Computer Engineering, Texas A&M University, College Station) ;
  • Zou, Guifu (Materials Physics and Applications Division, Los Alamos National Laboratory) ;
  • Bauer, Eve (Materials Physics and Applications Division, Los Alamos National Laboratory) ;
  • Mccleskey, Thomas M. (Materials Physics and Applications Division, Los Alamos National Laboratory) ;
  • Burrell, Anthony K. (Materials Physics and Applications Division, Los Alamos National Laboratory) ;
  • Jia, Quanxi (Materials Physics and Applications Division, Los Alamos National Laboratory)
  • Published : 2010.04.25

Abstract

Polymer-assisted deposition is a chemical solution route to high quality thin films. In this process, the polymer controls the viscosity and binds metal ions, resulting in a homogeneous distribution of metal precursors in the solution and the formation of crack-free and uniform films after thermal treatment. We review our recent effort to epitaxially grow metal-nitride thin films, such as hexagonal GaN, cubic TiN, AlN, NbN, and VN, mixed-nitride $Ti_{1-x}Al_xN$, ternary nitrides tetragonal $SrTiN_2$, $BaZrN_2$, and $BaHfN_2$, hexagonal $FeMoN_2$, and nanocomposite TiN-$BaZrN_2$.

Keywords

References

  1. F. J. Disalvo, Science 247, 649 (1990) [DOI: 10.1126/science. 247.4943.649].
  2. N. Brese and M. O’Keeffe, Structure & Bonding Vol. 79 (Springer Berlin, Heidelberg, 1992) p. 307. [DOI: 10.1007/BFb0036504].
  3. F. J. DiSalvo and S. J. Clarke, Curr. Opin. Solid State Mater. Sci. 1, 241 (1996) [DOI: 10.1016/s1359-0286(96)80091-x].
  4. R. Niewa and H. Jacobs, Chem. Rev. 96, 2053 (1996) [DOI:10.1021/cr9405157].
  5. M. A. Sr i ram, K. S. Wei l , and P. N. Kumta, Appl . Organomet. Chem. 11, 163 (1997) [DOI: 10.1002/(SICI)1099-0739(199702)11:2<163::AID-AOC564>3.0.CO;2-S].
  6. R. Kniep, Pure Appl. Chem. 69, 185 (1997) [DOI: 10.1351/pac199769010185].
  7. R. Niewa and F. J. DiSalvo, Chem. Mater. 10, 2733 (1998) [DOI:10.1021/cm980137c].
  8. S. Hearne, E. Chason, J. Han, J. A. Floro, J. Figiel, J. Hunter, H. Amano, and I. S. T. Tsong, Appl. Phys. Lett. 74, 356 (1999) [DOI:10.1063/1.123070].
  9. J. Y. Shi, L. P. Yu, Y. Z. Wang, G. Y. Zhang, and H. Zhang, Appl. Phys. Lett. 80, 2293 (2002) [DOI: 10.1063/1.1465531].
  10. G. S. Solomon, D. J. Miller, M. Ramsteiner, A. Trampert, O. Brandt, and K. H. Ploog, Appl. Phys. Lett. 87, 181912 (2005) [DOI:10.1063/1.2119408].
  11. S. Raghavan, J. Acord, and J. M. Redwing, Appl. Phys. Lett. 86, 261907 (2005) [DOI: 10.1063/1.1968436].
  12. A. P. Grzegorczyk, L. Macht, P. R. Hageman, J. L. Weyher, and P. K. Larsen, J. Cryst. Growth 273, 424 (2005) [DOI: 10.1016/j.jcrysgro.2004.09.100].
  13. J. Narayan, P. Pant, A. Chugh, H. Choi, and J. C. C. Fan, J. Appl. Phys. 99, 054313 (2006) [DOI: 10.1063/1.2178660].
  14. A. Bchetnia, A. Toure, T. A. Lafford, Z. Benzarti, I. Halidou, M. M. Habchi, and B. El Jani, J. Cryst. Growth 308, 283 (2007) [DOI:10.1016/j.jcrysgro.2007.09.006].
  15. K. Ueda, Y. Tsuchida, N. Hagura, F. Iskandar, K. Okuyama, and Y. Endo, Appl. Phys. Lett. 92, 101101 (2008) [DOI:10.1063/1.2891067].
  16. X. Q. Shen, H. Matsuhata, and H. Okumura, Appl. Phys. Lett. 86, 021912 (2005) [DOI: 10.1063/1.1849836].
  17. D. Cherns, L. Meshi, I. Griffiths, S. Khongphetsak, S. V. Novikov, N. Farley, R. P. Campion, and C. T. Foxon, Appl. Phys. Lett. 92, 121902 (2008) [DOI: 10.1063/1.2899944].
  18. P. K. Kuo, G. W. Auner, and Z. L. Wu, Thin Solid Films 253, 223 (1994) [DOI: 10.1016/0040-6090(94)90324-7].
  19. A. Sidorenko, H. Peisert, H. Neumann, and T. Chasse, Appl. Surf. Sci. 252, 7671 (2006) [DOI: 10.1016/j.apsusc.2006.03.053].
  20. J. W. Gerlach, A. Hofmann, T. Hoche, F. Frost, B. Rauschenbach, and G. Benndorf, Appl. Phys. Lett. 88, 011902 (2006) [DOI:10.1063/1.2159100].
  21. K. Kusakabe, S. Ando, and K. Ohkawa, J. Cryst. Growth 298, 293 (2007) [DOI: 10.1016/j.jcrysgro.2006.10.095].
  22. S. B. S. Heil, E. Langereis, F. Roozeboom, M. C. M. Van De Sanden, and W. M. M. Kessels, J. Electrochem. Soc. 153(2006) [DOI:10.1149/1.2344843].
  23. Q. S. Paduano, D. W. Weyburne, J. Jasinski, and Z. Liliental-Weber, J. Cryst. Growth 261, 259 (2004) [DOI: 10.1016/j.jcrysgro.2003.11.017].
  24. S. Strite and H. Morkoc, J. Vac. Sci. Technol. B 10, 1237 (1992) [DOI: 10.1116/1.585897].
  25. J. Jasinski, Phys. Stat. Sol. C 2, 941 (2005) [DOI: 10.1002/pssc.200590002].
  26. D. H. Gregory, M. G. Barker, P. P. Edwards, and D. J. Siddons, Inorg. Chem. 37, 3775 (1998) [DOI: 10.1021/ic971556z].
  27. G. Farault, R. Gautier, C. F. Baker, A. Bowman, and D. H. Gregory, Chem. Mater. 15, 3922 (2003) [DOI: 10.1021/cm034502y].
  28. J. L. Hunting, M. M. Szymanski, P. E. Johnson, C. Brenhin Kellar, and F. J. DiSalvo, J. Solid State Chem. 180, 31 (2007) [DOI:10.1016/j.jssc.2006.09.018].
  29. A. Gomathi, Mater. Res. Bull. 42, 870 (2007) [DOI: 10.1016/j.materresbull.2006.08.021].
  30. D. McKay, J. S. J. Hargreaves, J. L. Rico, J. L. Rivera, and X. L. Sun, J. Solid State Chem. 181, 325 (2008) [DOI: 10.1016/j.jssc.2007.12.001].
  31. O. Seeger, M. Hofmann, J. Strahle, J. P. Laval, and B. Frit, Z. Anorg. Allg. Chem. 620, 2008 (1994) [DOI: 10.1002/zaac.19946201129].
  32. D. H. Gregory, M. G. Barker, P. P. Edwards, M. Slaski, and D. J. Siddons, J. Solid State Chem. 137, 62 (1998) [DOI: 10.1006/jssc.1997.7686].
  33. D. H. Gregory, P. M. O’Meara, A. G. Gordon, D. J. Siddons, A. J. Blake, M. G. Barker, T. A. Hamor, and P. P. Edwards, J. Alloys Compd. 317-318, 237 (2001) [DOI: 10.1016/s0925-8388(00)01340-2].
  34. T. J. Prior, S. E. Oldham, V. J. Couper, and P. D. Battle, Chem. Mater. 17, 1867 (2005) [DOI: 10.1021/cm047859q].
  35. Z. Stoeva, B. Jager, R. Gomez, S. Messaoudi, M. B. Yahia, X. Rocquefelte, G. B. Hix, W. Wolf, J. J. Titman, R. Gautier, P. Herzig, and D. H. Gregory, J. Am. Chem. Soc. 129, 1912 (2007) [DOI:10.1021/ja063208e].
  36. R. N. Panda and N. S. Gajbhiye, J. Cryst. Growth 191, 92 (1998) [DOI: 10.1016/s0022-0248(98)00011-6].
  37. F. F. Lange, Science 273, 903 (1996) [DOI: 10.1126/science. 273.5277.903].
  38. R. W. Schwartz, Chem. Mater. 9, 2325 (1997) [DOI: 10.1021/cm970286f].
  39. M. Puchinger, T. Wagner, P. Fini, D. Kisailus, U. Beck, J. Bill, F. Aldinger, E. Arzt, and F. F. Lange, J. Cryst. Growth 233, 57 (2001) [DOI: 10.1016/s0022-0248(01)01495-6].
  40. D. Rodewald, J. Bill, U. Beck, M. Puchinger, T. Wagner, A. Greiner, and F. Aldinger, Adv. Mater. 11, 1502 (1999) [DOI: 10.1002/(sici)1521-4095(199912)11:18<1502::aid-adma1502>3.0.co;2-u].
  41. M. Puchinger, T. Wagner, D. Rodewald, J. Bill, F. Aldinger, and F. F. Lange, J. Cryst. Growth 208, 153 (2000) [DOI: 10.1016/s0022-0248(99)00416-9].
  42. M. Puchinger, D. J. Kisailus, F. F. Lange, and T. Wagner, J. Cryst. Growth 245, 219 (2002) [DOI: 10.1016/s0022-0248(02)01712-8].
  43. H. Parala, A. Devi , A. Wohl far t , M. Winter, and R. A. Fischer, Adv. Funct. Mater. 11, 224 (2001) [DOI: 10.1002/1616-3028(200106)11:3<224::aid-adfm224>3.0.co;2-4].
  44. D. Kisailus, J. H. Choi, and F. F. Lange, J. Mater. Res. 17, 2540 (2002) [DOI: 10.1557/JMR.2002.0369].
  45. T. P. Niesen, M. Puchinger, P. Gerstel, D. Rodewald, J. Wolff, T. Wagner, J. Bill, and F. Aldinger, Mater. Chem. Phys. 73, 301 (2002) [DOI: 10.1016/s0254-0584(01)00393-5].
  46. K. Sardar, A. R. Raju, and G. N. Subbanna, Solid State Commun. 125, 355 (2003) [DOI: 10.1016/s0038-1098(02)00810-4].
  47. A. L. Hector, Chem. Soc. Rev. 36, 1745 (2007) [DOI: 10.1039/b608838b].
  48. G. Sinha, D. Ganguli, and S. Chaudhuri, J. Colloid Interface Sci. 319, 123 (2008) [DOI: 10.1016/j.jcis.2007.11.014].
  49. Q. X. Jia, T. M. McCleskey, A. K. Burrell, Y. Lin, G. E. Collis, H. Wang, A. D. Q. Li, and S. R. Foltyn, Nature Materials 3, 529 (2004) [DOI: 10.1038/nmat1163].
  50. A. K. Burrell, T. Mark McCleskey, and Q. X. Jia, Chem. Commun., 1271 (2008) [DOI: 10.1039/b712910f].
  51. H. Luo, Y. Lin, H. Wang, C. Y. Chou, N. A. Suvorova, M. E. Hawley, A. H. Mueller, F. Ronning, E. Bauer, A. K. Burrell, M. Mc-Cieskey, and Q. X. Jia, J. Phys. Chem. C 112, 20535 (2008) [DOI:10.1021/jp807793p].
  52. G. Zou, M. Jain, H. Zhou, H. Luo, S. A. Baily, L. Civale, E. Bauer, T. M. McCleskey, A. K. Burrell, and Q. Jia, Chem. Commun., 6022 (2008) [DOI: 10.1039/b815066d].
  53. H. Luo, Y. Lin, H. Wang, J. H. Lee, N. A. Suvorova, A. H. Mueller, A. K. Burrell, T. M. McCleskey, E. Bauer, I. O. Usov, M. E. Hawley, T. G. Holesinger, and Q. Jia, Adv. Mater. 21, 193 (2009) [DOI:10.1002/adma.200801959].
  54. H. Luo, H. Wang, Z. Bi, D. M. Feldmann, Y. Wang, A. K. Burrell, T. M. McCleskey, E. Bauer, M. E. Hawley, and Q. Jia, J. Am. Chem. Soc. 130, 15224 (2008) [DOI: 10.1021/ja803544c].
  55. H. Luo, H. Wang, Z. Bi, G. Zou, T. M. McCleskey, A. K. Burrell, E. Bauer, M. E. Hawley, Y. Wang, and Q. Jia, Angewandte Chemie - International Edition 48, 1490 (2009) [DOI: 10.1002/anie.200805394].

Cited by

  1. First-principles study of electronic and optical properties of Sr2ZnN2 under pressure vol.30, pp.10, 2016, https://doi.org/10.1142/S0217984916501396
  2. First principles investigations on elastic and electronic properties of BaHfN2 under pressure vol.526, 2012, https://doi.org/10.1016/j.jallcom.2012.02.118
  3. Structural, mechanical, electronic and optical properties of layered ternary nitrides SrZrN 2 and SrHfN 2 : First-principles calculations vol.93, 2014, https://doi.org/10.1016/j.commatsci.2014.06.045
  4. High-stability Ti 4+ precursor for the TiO 2 compact layer of dye-sensitized solar cells vol.356, 2015, https://doi.org/10.1016/j.apsusc.2015.08.050
  5. Epitaxial growth and physical properties of ternary nitride thin films by polymer-assisted deposition vol.109, pp.8, 2016, https://doi.org/10.1063/1.4961880
  6. Room-Temperature Ferromagnetism in Thin Films of LaMnO3 Deposited by a Chemical Method Over Large Areas vol.7, pp.9, 2015, https://doi.org/10.1021/am508941j
  7. Chemical Solution Deposition of Epitaxial Metal-Oxide Nanocomposite Thin Films vol.13, pp.1, 2013, https://doi.org/10.1002/tcr.201200022
  8. Theoretical study on the structural, electronic and physical properties of layered alkaline-earth-group-4 transition-metal nitrides AEMN2 vol.4, pp.60, 2014, https://doi.org/10.1039/C4RA05395H
  9. Facile preparation of copper nitride powders and nanostructured films vol.4, pp.22, 2016, https://doi.org/10.1039/C6TC00493H