DOI QR코드

DOI QR Code

Correlation between Physical Defects and Performance in AlGaN/GaN High Electron Mobility Transistor Devices

  • Park, Seong-Yong (Department of Materials Science and Engineering, University of Texas at Dallas) ;
  • Lee, Tae-Hun (Department of Materials Science and Engineering, University of Texas at Dallas) ;
  • Kim, Moon-J. (Department of Materials Science and Engineering, University of Texas at Dallas)
  • Published : 2010.04.25

Abstract

Microstructural origins of leakage current and physical degradation during operation in product-quality AlGaN/GaN high electron mobility transistor (HEMT) devices were investigated using photon emission microscopy (PEM) and transmission electron microscopy (TEM). AlGaN/GaN HEMTs were fabricated with metal organic chemical vapor deposition on semi-insulating SiC substrates. Photon emission irregularity, which is indicative of gate leakage current, was measured by PEM. Site specific TEM analysis assisted by a focused ion beam revealed the presence of threading dislocations in the channel below the gate at the position showing strong photon emissions. Observation of electrically degraded devices after life tests revealed crack/pit shaped defects next to the drain in the top AlGaN layer. The morphology of the defects was three-dimensionally investigated via electron tomography.

Keywords

References

  1. Y. F. Wu, A. Saxler, M. Moore, R. P. Smith, S. Sheppard, P. M. Chavarkar, T. Wisleder, U. K. Mishra, and P. Parikh, IEEE Electron Device Lett. 25, 117 (2004) [DOI: 10.1109/LED.2003.822667].
  2. S. L. Delage and C. Dua, Microelectron. Reliab. 43, 1705 (2003) [DOI: 10.1016/s0026-2714(03)00338-x].
  3. G. Meneghesso, G. Verzellesi, F. Danesin, F. Rampazzo, F. Zanon, A. Tazzoli, M. Meneghini, and E. Zanoni, IEEE Trans. Dev. Mat. Rel. 8, 332 (2008) [DOI: 10.1109/TDMR.2008.923743].
  4. U. K. Mishra, L. Shen, T. E. Kazior, and W. Yi-Feng, Proc. IEEE 96, 287 (2008) [DOI: 10.1109/JPROC.2007.911060].
  5. S. Singhal, T. Li, A. Chaudhari, A. W. Hanson, R. Therrien, J. W. Johnson, W. Nagy, J. Marquart, P. Rajagopal, J. C. Roberts, E. L. Piner, I. C. Kizilyalli, and K. J. Linthicum, Microelectron. Reliab. 46, 1247 (2006) [DOI: 10.1016/j.microrel.2006.02.009].
  6. K. M. Jung, Y. S. Lee, S. J. Kim, D. H. Kim, J. M. Kim, H. G. Choi, C. K. Hahn, and T. G. Kim, J. KIEEME 21, 885 (2008)
  7. H. Kim, J. Lee, D. Liu, and W. Lu, Appl. Phys. Lett. 86, 143505 (2005) [DOI: 10.1063/1.1899255].
  8. S. Mizuno, Y. Ohno, S. Kishimoto, K. Maezawa, and T. Mizutani, Jpn. J. Appl. Phys. 41, 5125 (2002) [DOI: 10.1143/JJAP.41.5125].
  9. H. Zhang, E. J. Miller, and E. T. Yu, J. Appl. Phys. 99, 023703 (2006) [DOI: 10.1063/1.2159547].
  10. J. W. P. Hsu, M. J. Manfra, R. J. Molnar, B. Heying, and J. S. Speck, Appl. Phys. Lett. 81, 79 (2002) [DOI: 10.1063/1.1490147].
  11. N. Faleev, H. Temkin, I. Ahmad, M. Holtz, and Y. Melnik, J. Appl. Phys. 98, 123508 (2005) [DOI: 10.1063/1.2141651].
  12. N. G. Weimann, L. F. Eastman, D. Doppalapudi, H. M. Ng, and T. D. Moustakas, J. Appl. Phys. 83, 3656 (1998) [DOI:10.1063/1.366585].
  13. M. Bouya, D. Carisetti, N. Malbert, N. Labat, P. Perdu, J. C. Clement, M. Bonnet, and G. Pataut, Microelectron. Reliab. 47, 1630 (2007) [DOI: 10.1016/j.microrel.2007.07.085].
  14. U. Chowdhury, J. L. Jimenez, C. Lee, E. Beam, P. Saunier, T. Balistreri, P. Seong-Yong, L. Taehun, J. Wang, M. J. Kim, J. Jungwoo, and J. A. del Alamo, IEEE Electron Device Lett. 29, 1098 (2008) [DOI: 10.1109/LED.2008.2003073].
  15. A. Koudymov, M. S. Shur, and G. Simin, IEEE Electron Device Lett. 28, 332 (2007) [DOI: 10.1109/LED.2007.895389].
  16. S. P. McAlister, Solid-State Electron. 51, 142 (2007) [DOI:10.1016/j.sse.2006.11.001].
  17. A. Sarua, H. Ji, M. Kuball, M. J. Uren, T. Martin, K. J. Nash, K. P. Hilton, and R. S. Balmer, Appl. Phys. Lett. 88, 103502 (2006) [DOI: 10.1063/1.2182011].
  18. S. Y. Park, C. Floresca, U. Chowdhury, J. L. Jimenez, C. Lee, E. Beam, P. Saunier, T. Balistreri, and M. J. Kim, Microelectron. Reliab. 49, 478 (2009) [DOI: 10.1016/j.microrel.2009.02.015].
  19. S. R. Lee, D. D. Koleske, K. C. Cross, J. A. Floro, K. E. Waldrip, A. T. Wise, and S. Mahajan, Appl. Phys. Lett. 85, 6164 (2004) [DOI:10.1063/1.1840111].

Cited by

  1. The role of extended defects in device degradation vol.210, pp.1, 2013, https://doi.org/10.1002/pssa.201200567
  2. New degradation mechanism observed for AlGaN/GaN HEMTs with sub 100nm scale unpassivated regions around the gate periphery vol.54, pp.6-7, 2014, https://doi.org/10.1016/j.microrel.2014.03.005
  3. Optimization of Ohmic Contact Metallization Process for AlGaN/GaN High Electron Mobility Transistor vol.14, pp.1, 2013, https://doi.org/10.4313/TEEM.2013.14.1.32
  4. Room-temperature diffusive phenomena in semiconductors: The case of AlGaN vol.84, pp.21, 2011, https://doi.org/10.1103/PhysRevB.84.214109
  5. Spatial distribution of structural degradation under high-power stress in AlGaN/GaN high electron mobility transistors vol.100, pp.17, 2012, https://doi.org/10.1063/1.4707163
  6. Modeling Proton Irradiation in AlGaN/GaN HEMTs: Understanding the Increase of Critical Voltage vol.60, pp.6, 2013, https://doi.org/10.1109/TNS.2013.2286115