• Title/Summary/Keyword: Hexagonal phase

Search Result 270, Processing Time 0.025 seconds

Structure and Electrochemical Characterization of LiNi0.5Mn0.3Co0.2O2 as the Cathode Material Synthesized by Simple-combustion Method (단순 연소법으로 합성한 LiNi0.5Mn0.3Co0.2O2 양극 활물질의 구조 분석 및 전기화학적 특성 연구)

  • Cho, Sung-Woo;Ju, Jeong-Hun;Ryu, Seong-Hyeon;Ryu, Kawng-Sun
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.4
    • /
    • pp.264-269
    • /
    • 2010
  • $LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$ active material was prepared by simple-combustion method and investigated as the cathode material for li-ion battery. The structural characterization was analyzed by X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM), respectively. The XRD patterns of $LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$ sample was indicated a phase of layered hexagonal structure. The size of particles has not uniform diameters ranging from 100 to 300 nm. The electrochemical performance of the $LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$ was measured by Cyclic Voltammetry and galvanostatics. The $LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$ shows the discharge capacity of ~162 mAh/g in the range of 2.8 to 4.3 V at the first cycle.

Microstructure and Morphology of Carbide Precipitates in $Ni_3Al$ and TiAl ($Ni_3Al$과 TiAl 중에 석출한 탄화물의 미세구조와 형태)

  • Han, Chang-Suk;Koo, Kyung-Wan;Kim, Jang-Woo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.19 no.1
    • /
    • pp.10-19
    • /
    • 2006
  • Microstructure and morphology of precipitates in $Ni_3Al$- and TiAl-based intermetallics containing carbon have been investigated in terms of transmission electron microscopy(TEM). In an $L1_2$-ordered $Ni_3Al$ alloy with 4 mol.% of chromium and 0.2~3.0 mol.% of carbon, fine octahedral precipitates of $M_{23}C_6$ type carbide were formed in the matrix by aging at temperatures around 973 K after solution annealing at 1423 K. TEM examination revealed that the $M_{23}C_6$ phase and the matrix lattices have a cube-cube orientation relationship and keep partial atomic matching at the {111} interface. After prolonged aging or by aging at higher temperatures, the $M_{23}C_6$ precipitates then adopt a rod-like morphology elongated parallel to the <100> directions. In the $L1_0$-ordered TiAl containing 0.1~2.0 mol.% carbon, TEM observations revealed that needle-like precipitates, which lie only in one direction parallel to the [001] axis of the $L1_0$ matrix, appear in the matrix and preferentially at dislocations. Selected area electron diffraction(SAED) patterns analyses have shown that the needle-shaped precipitate is $Ti_3AlC$ of perovskite type. The orientation relationship between the $Ti_3AlC$ and the $L1_0$ matrix is found to be $(001)_{Ti3AlC}//(001)_{L10\;matrix}$ and $[010]_{Ti3AlC}//[010]_{L10\;matrix}$. By aging at higher temperatures or for longer period at 1073 K, plate-like precipitates of $Ti_2AlC$ with a hexagonal structure are formed on the {111} planes of the $L1_0$ matrix. The orientation relationship between the $Ti_2AlC$ and the $L1_0$ matrix is $(0001)_{Ti2AlC}//(111)_{L10\;matrix}$ and $_{Ti2AlC}//_{L10\;matrix}$.

Analysis of Structure and Physical and Chemical Properties of the Carbonized Pine Wood (Pinus densiflora S. et Z) Powder (I) - Elemental Analysis, SEM, N2 Adsorption-desorption- (가열처리 및 탄화처리 소나무재(Pinus densiflora) 목분의 구조 및 물리·화학적 특성(I) - 원소 분석, SEM, 질소 흡착-탈착 실험 -)

  • Lee, In-Ja;Lee, Won-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.44-51
    • /
    • 2008
  • In this study, the effects of carbonization temperature on the physico-chemical properties of Korean red-pine wood (Pinus densiflora S. et Z.) powder charcoal are studied by elemental analysis, nitrogen adsorption-desorption and SEM techniques. The surface structure and physico-chemical properties of the wood charcoal greatly depend on the carbonization temperature and their temperature dependences for sapwood (swd) and heartwood (hwd) are qualitatively analogous. Because of the differences in characteristics such as hardness and composition between heartwood and sapwood, charcoals from heartwood have larger specific surface area and smaller average pore diameter than that from sapwood. Because the decomposition reaction mostly proceeds in the precarbonization stage, the charcoal produced in this stage mainly consists of carbon. The second carbonization reaction is insignificant but still proceeds up to $700^{\circ}C$, and the specific surface area continuously increases. Above $800^{\circ}C$, the surface area is reduced by the pore-filling and narrowing effects and especially above $900^{\circ}C$, new carbon phase with hexagonal column rooted into the pore is formed. The nitrogen adsorption-desorption isotherm of the charcoal is classified as type I and its hysteresis loop was as type H4.

Synthesis and Structural Analysis of Binary Alloy ($MoRu_3$, $MoRh_3$) (이성분계 금속합금($MoRu_3$, $MoRh_3$)의 합성 및 구조분석)

  • Park, Yong Joon;Lee, Jong-Gyu;Kim, Jong Goo;Kim, Jung Suk;Jee, Kwang-Yong
    • Analytical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.189-193
    • /
    • 1998
  • Binary alloys, $MoRu_3$ and $MoRh_3$, have been prepared using arc melting furnace. Mo and the noble metals Ru and Rh are the constituents of metallic insoluble residues, which were found in the early days of the post-irradiation studies on uranium oxide fuels. Detailed structural informations about these alloys have not been reported on JCPDS files of ICDD (International Centre for Diffraction Data). The results of X-ray diffraction study showed that the alloy was crystallized in hexagonal close-packing, well known as ${\varepsilon}$-phase. The X-ray diffraction patterns of these alloys matched well to that of $WRh_3$ with $P6_3/mmc$ of space group. The lattice parameters, a and c, were calculated using the least squares extrapolation. It was found from X-ray photoelectron spectroscopic measurements that Mo on the surface of the alloy was oxidized to Mo(6+), which could be removed by sputtering with Ar ions for approximately 15 minutes. The changes in binding energy of Mo, Ru, and Rh on the surface of the alloy were not observed. Magnetic susceptibility measurements resulted in the typical Pauli-paramagnetic behavior in the temperature range of 2 to 300 K.

  • PDF

A Study of EPMA Analysis for Nitric Acid Insoluble Alloys (질산불용성 합금의 EPMA분석)

  • Park, Soon-Dal;Park, Yong-Joon;Kim, Jong-Goo;Son, Se-Chul;Joe, Kih-Soo
    • Analytical Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.485-494
    • /
    • 1998
  • Ternary and quaternary alloys composed of Mo-Ru-Rh-Pd were prepared and their crystal structure and quantitative chemical compositions were analysed by XRD, WDX, EDX and ICP/AES. The results of X-ray diffraction studies showed that the alloys were crystallized in hexagonal close packing, well known as ${\varepsilon}$-phase with $P6_3/mmc$ of space group. The optimum accelerating voltage for Zr~Cd(40~48) analyzed by EPMA using PET crystal was found to be 15 kV and the linear regression coefficient(R) of atomic number and X-ray intensity was approximately 0.998 without Tc standard specimen. The WDX results of alloys of Mo and Pd by linear regression equations were detected to be 0.1% lower compared to WDX analysis results using standard specimen, while Ru, Rh were detected 3% higher. These alloys were completely dissolved in mixed acid of 12.5 mL HCl and 1 mL $HNO_3$, at $220^{\circ}C$ for 22 hours using autoclave with PTFE vessel. There was no reprecipitating phenomnon when diluted 100 times with 1N-HCl. The results of ICP/AES analysis deviated less than 4% comparing with those of normal WDX analysis.

  • PDF

Effect of Sputtering Powers on Mg and Ga Co-Doped ZnO Thin Films with Transparent Conducting Characteristics (RF 마그네트론 스퍼터를 이용하여 제작한 MGZO 박막의 구조적 및 전기적, 광학적 특성에 미치는 스퍼터링 전력의 영향)

  • Kim, In Young;Shin, Seung Wook;Kim, Min Sung;Yun, Jae Ho;Heo, Gi Seok;Jeong, Chae Hwan;Moon, Jong-Ha;Lee, Jeong Yong;Kim, Jin Hyoek
    • Korean Journal of Materials Research
    • /
    • v.23 no.3
    • /
    • pp.155-160
    • /
    • 2013
  • ZnO thin films co-doped with Mg and Ga (MxGyZzO, x + y + z = 1, x = 0.05, y = 0.02 and z = 0.93) were prepared on glass substrates by RF magnetron sputtering with different sputtering powers ranging from 100W to 200W at a substrate temperature of $350^{\circ}C$. The effects of the sputtering power on the structural, morphological, electrical, and optical properties of MGZO thin films were investigated. The X-ray diffraction patterns showed that all the MGZO thin films were grown as a hexagonal wurtzite phase with the preferred orientation on the c-axis without secondary phases such as MgO, $Ga_2O_3$, or $ZnGa_2O_4$. The intensity of the diffraction peak from the (0002) plane of the MGZO thin films was enhanced as the sputtering power increased. The (0002) peak positions of the MGZO thin films was shifted toward, a high diffraction angle as the sputtering power increased. Cross-sectional field emission scanning electron microscopy images of the MGZO thin films showed that all of these films had a columnar structure and their thickness increased with an increase in the sputtering power. MGZO thin film deposited at the sputtering power of 200W showed the best electrical characteristics in terms of the carrier concentration ($4.71{\times}10^{20}cm^{-3}$), charge carrier mobility ($10.2cm^2V^{-1}s^{-1}$) and a minimum resistivity ($1.3{\times}10^{-3}{\Omega}cm$). A UV-visible spectroscopy assessment showed that the MGZO thin films had high transmittance of more than 80 % in the visible region and that the absorption edges of MGZO thin films were very sharp and shifted toward the higher wavelength side, from 270 nm to 340 nm, with an increase in the sputtering power. The band-gap energy of MGZO thin films was widened from 3.74 eV to 3.92 eV with the change in the sputtering power.

Fabrication and characterization of GaN substrate by HVPE (HVPE법으로 성장시킨 GaN substrate 제작과 특성 평가)

  • Oh, Dong-Keun;Choi, Bong-Geun;Bang, Sin-Young;Eun, Jong-Won;Chung, Jun-Ho;Lee, Seong-Kuk;Chung, Jin-Hyun;Shim, Kwang-Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.4
    • /
    • pp.164-167
    • /
    • 2010
  • Bulk GaN single crystal with 1.5 mm thickness was successfully grown by hydride vapor phase epitaxy (HVPE) technique. Free-standing GaN substrates of $10{\times}10,\;15{\times}15$ mm size were fabricate after lift-off of sapphire substrate and their optical properties were characterized properties for device applications. X-ray diffraction patterns showed (002) and (004) peak, and the FWHM of the X-ray rocking curve (XRC) measurement in (002) was 98 arcsec. A sharp photoluminescence spectrum at 363 nm was observed and defect spectrum at visible range was not detected. The hexagonal-shaped etch-pits are formed on the GaN surface in $200^{\circ}C\;H_3PO_4$ at 5 minutes. The defect density calculated from observed etch-pits on surface was around $5{\times}10^6/cm^2$. This indicates that the fabricated GaN substrates can be used for applications in the field of optodevice, and high power electronics.

Effect of Calcination Temperature on Electromagnetic Wave Absorption Properties of M-type Ferrite Composite (하소온도가 M형 페라이트 복합재의 전자파 흡수 특성에 미치는 영향)

  • Seong Jun Cheon;Jae Ryung Choi;Sang Bok Lee;Je In Lee;Horim Lee
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.289-296
    • /
    • 2023
  • In this study, we investigated the electromagnetic properties and microwave absorption characteristics of M-type hexagonal ferrites, which are known as millimeter-wave absorbing materials, according to their calcination temperature. The M-type ferrites synthesized using a molten salt-based sol-gel method exhibited a single-phase M-type crystal structure at calcination temperatures above 850℃. The synthesized particle size increased as well with the calcination temperature. Saturation magnetization increased gradually with increasing calcination temperature, but coercivity reached a maximum at 1050℃ and then rapidly decreased. After preparing a thermoplastic polyurethane (TPU) composite containing 70 wt% of M-type ferrites, we measured the complex permittivity and permeability in the Q-band (33-50 GHz) and V-band (50-75 GHz) frequency ranges, where ferromagnetic resonance occurred. Strong magnetic loss from ferromagnetic resonance occurred in the 50 GHz band for all composite samples. Based on the measured results, we calculated the reflection loss of the TPU/M-type ferrite composite. By calculating the reflection loss of the M-type ferrite composite, the M-type ferrite calcined at 1250℃ showed excellent electromagnetic wave absorption performance of more than -20 dB at 52 GHz with a thickness of about 0.5 mm.

Experimental Investigation of Stannite-Sphalerite System In Relation to Ores (황석석일섬아연석계(黃錫石一閃亞鉛石系)의 실험연구(實驗硏究)와 천연건물(天然鍵物)에의 활용(活用))

  • Lee, Jae Yeong
    • Economic and Environmental Geology
    • /
    • v.8 no.1
    • /
    • pp.1-23
    • /
    • 1975
  • The subject of this study deals with phase relations between stannite ($Cu_2FeSnS_4$) and sphalerite (${\beta}-ZnS$)/wurtzite (${\alpha}-ZnS$). The phase relations were systematically investigated from liquidus temperature to $400^{\circ}C$ under controlled conditions. ${\beta}-stannite$ (tetragonal) is stable up to $706{\pm}5^{\circ}C$, where it inverts to a high-temperature polymorph ${\alpha}-stannite$ (cubic) melting congruently at $867{\pm}5^{\circ}C$. Sphalerite (cubic, ${\beta}-ZnS$) inverts at $1013{\pm}3^{\circ}C$ to wurtzite, which is the hexagonal hightemperature polymorph of ZnS. Between ${\alpha}-stannite$ and sphalerite a complete solid solution series exists above approximately $870^{\circ}C$ up to solidus temperature. The melting temperature of ${\alpha}-stannite$ rises towards sphalerite and reaches a maximum at $1074{\pm}3^{\circ}C$, which is the peritectic with the composition of 91 wt. % sphalerite and 9 wt. % ${\alpha}-stannite$. At this temperature, wurtzite takes only 5wt. % ${\alpha}-stannite$ in solid solution which decreases with increasing temperature. The inverson temperature of ${\alpha}/{\beta}-stannite$ is lowered with increasing amounts of sphalerite in solid solution down to $614{\pm}7^{\circ}C$, which is the eutectoid with the composition of 13 wt. % sphalerite and 87 wt. % ${\alpha}-stannite$. Here, ${\beta}-stannite$ contains only 10wt. % sphalerite in solid solution. With decreasing temperature, the ranges of the solid solution on both sides of the system narrow. The phase relations in the above pure system changed due to the FeS impurities in the sphalerite solid solution. The eutectoid increased from $614{\pm}7^{\circ}C$ up to $695{\pm}5^{\circ}C$ (5 wt. % FeS) and $700{\pm}5^{\circ}C$ (10wt. % FeS), while the peritectic decreased from $1074{\pm}3^{\circ}C$ down to $1036{\pm}3^{\circ}C$ (wt. %FeS) and $987{\pm}3^{\circ}C$ (10wt. %FeS). A most notable change is the appearance of non-binary regions. An important feature is the combination of this study system with the experimental results reported by Sprinfer (1972). If a stannite-kesterite solid solution is used in the place of stannite as a bulk composition, the inversion temperature is lowered to less than $400^{\circ}C$ which belongs to temperatures of the hydrothermal region.

  • PDF

Synthesis of ${\alpha}$-Alumina Nanoparticles Through Partial Hydrolysis of Aluminum Chloride Vapor (염화알미늄 증기의 부분가수분해를 통한 알파 알루미나 나노입자 제조)

  • Park, Hoey Kyung;Yoo, Youn Sug;Park, Kyun Young;Jung, Kyeong Youl
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.664-668
    • /
    • 2011
  • Spherical alumina precursors represented by $AlO_xCl_y(OH)_z$, 30~200 nm in particle diameter, were prepared by partial hydrolysis of $AlCl_3$ vapor in a 500 ml reactor. Investigated on the particle morphology and size were the effects of the reaction time, the stirring speed and the reaction temperature. The particle morphology and size was insensitive to the reaction time in the range 20 to 300 s. The variation of the stirring speed from 0 to 300 and 800 rpm showed that the particle size was the largest at 0 rpm. As the temperature was varied from 180 to 190, 200, $140^{\circ}C$, the particle size showed a maximum at $190^{\circ}C$. By calcination of the as-produced particles at $1,200^{\circ}C$ for 6h with a heating rate of $10^{\circ}C$/min, ${\alpha}$-alumina particles 45 nm in surface area equivalent diameter were obtained. The particle shape after calcination turned wormlike due to sintering between neighboring particles. A rapid calcination at $1400^{\circ}C$ for 0.5 h with a higher heating rate of $50^{\circ}C$/min reduced the sintering considerably. An addition of $SiCl_4$ or TMCTS(2,4,6,8-tetramethylcyclosiloxane) to the $AlCl_3$ reduced the sintering effectively in the calcination step; however, peaks of ${\gamma}$ or mullite phase appeared. An addition of $AlF_3$ to the particles obtained from the hydrolysis resulted in a hexagonal disc shaped alumina particles.