• Title/Summary/Keyword: Heuristics for $A^*$ algorithm

Search Result 204, Processing Time 0.024 seconds

A Genetic Algorithm for Materialized View Selection in Data Warehouses (데이터웨어하우스에서 유전자 알고리즘을 이용한 구체화된 뷰 선택 기법)

  • Lee, Min-Soo
    • The KIPS Transactions:PartD
    • /
    • v.11D no.2
    • /
    • pp.325-338
    • /
    • 2004
  • A data warehouse stores information that is collected from multiple, heterogeneous information sources for the purpose of complex querying and analysis. Information in the warehouse is typically stored In the form of materialized views, which represent pre-computed portions of frequently asked queries. One of the most important tasks of designing a warehouse is the selection of materialized views to be maintained in the warehouse. The goal is to select a set of views so that the total query response time over all queries can be minimized while a limited amount of time for maintaining the views is given(maintenance-cost view selection problem). In this paper, we propose an efficient solution to the maintenance-cost view selection problem using a genetic algorithm for computing a near-optimal set of views. Specifically, we explore the maintenance-cost view selection problem in the context of OR view graphs. We show that our approach represents a dramatic improvement in terms of time complexity over existing search-based approaches that use heuristics. Our analysis shows that the algorithm consistently yields a solution that only has an additional 10% of query cost of over the optimal query cost while at the same time exhibits an impressive performance of only a linear increase in execution time. We have implemented a prototype version of our algorithm that is used to evaluate our approach.

Development of the Local Area Design Module for Planning Automated Excavator Work at Operation Level (자동화 굴삭로봇의 운용단위 작업계획수립을 위한 로컬영역설계모듈 개발)

  • Lee, Seung-Soo;Jang, Jun-Hyun;Yoon, Cha-Woong;Seo, Jong-Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.363-375
    • /
    • 2013
  • Today, a shortage of the skilled operator has been intensified gradually and the necessity of an earthwork in extreme environment operators are difficult to access is increasing for the purpose of resource development and new living space creation. For this reason, an effort to develop an unmanned excavation robot for fully automated earthwork system is continuing globally. In Korea, a research consortium called 'Intelligent Excavation System' has been formed since 2006 as a part of Construction Technology Innovation Program of Ministry of Land, Transport and Maritime Affairs of Korea. Among detailed technologies of the Task Planning System is one of the core technologies of IES, this paper explains research and development process of the Local Area Design Module, which provides informatization unit to create automated excavators' work command information at operation level such as location, range, target, and sequence for excavation work. Designing of Local Area should be considered various influential factors such as excavator's specification, working mechanism, heuristics, and structural stability to create work plan guaranteed safety and effectiveness. For this research, conceptual and detail design of the Local Area is performed for analyzing design element and variable, and quantization method of design specification corresponding with heuristics and structural safety is generated. Finally, module is developed through constructed algorithm and developed module is verified.

A Multiobjective Genetic Algorithm for Static Scheduling of Real-time Tasks (다목적 유전 알고리즘을 이용한 실시간 태스크의 정적 스케줄링 기법)

  • 오재원;김희천;우치수
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.3
    • /
    • pp.293-307
    • /
    • 2004
  • We consider the problem of scheduling tasks of a precedence constrained task graph, where each task has its execution time and deadline, onto a set of identical processors in a way that simultaneously minimizes the number of processors required and the total tardiness of tasks. Most existing approaches tend to focus on the minimization of the total tardiness of tasks. In another methods, solutions to this problem are usually computed by combining the two objectives into a simple criterion to be optimized. In this paper, the minimization is carried out using a multiobjective genetic algorithm (GA) that independently considers both criteria by using a vector-valued cost function. We present various GA components that are well suited to the problem of task scheduling, such as a non-trivial encoding strategy. a domination-based selection operator, and a heuristic crossover operator We also provide three local improvement heuristics that facilitate the fast convergence of GA's. The experimental results showed that when compared to five methods used previously, such as list-scheduling algorithms and a specific genetic algorithm, the Performance of our algorithm was comparable or better for 178 out of 180 randomly generated task graphs.

Conjunctive Boolean Query Optimization based on Join Sequence Separability in Information Retrieval Systems (정보검색시스템에서 조인 시퀀스 분리성 기반 논리곱 불리언 질의 최적화)

  • 박병권;한욱신;황규영
    • Journal of KIISE:Databases
    • /
    • v.31 no.4
    • /
    • pp.395-408
    • /
    • 2004
  • A conjunctive Boolean text query refers to a query that searches for tort documents containing all of the specified keywords, and is the most frequently used query form in information retrieval systems. Typically, the query specifies a long list of keywords for better precision, and in this case, the order of keyword processing has a significant impact on the query speed. Currently known approaches to this ordering are based on heuristics and, therefore, cannot guarantee an optimal ordering. We can use a systematic approach by leveraging a database query processing algorithm like the dynamic programming, but it is not suitable for a text query with a typically long list of keywords because of the algorithm's exponential run-time (Ο(n2$^{n-1}$)) for n keywords. Considering these problems, we propose a new approach based on a property called the join sequence separability. This property states that the optimal join sequence is separable into two subsequences of different join methods under a certain condition on the joined relations, and this property enables us to find a globally optimal join sequence in Ο(n2$^{n-1}$). In this paper we describe the property formally, present an optimization algorithm based on the property, prove that the algorithm finds an optimal join sequence, and validate our approach through simulation using an analytic cost model. Comparison with the heuristic text query optimization approaches shows a maximum of 100 times faster query processing, and comparison with the dynamic programming approach shows exponentially faster query optimization (e.g., 600 times for a 10-keyword query).

An Implementation of Cutting-Ironbar Manufacturing Software using Dynamic Programming (동적계획법을 이용한 철근가공용 소프트웨어의 구현)

  • Kim, Seong-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.4
    • /
    • pp.1-8
    • /
    • 2009
  • In this paper, we deal an implementation of the software that produces sub-optimal solution of cutting-ironbar planning problem using dynamic programming. Generally, it is required to design an optimization algorithm to accept the practical requirements of cutting ironbar manufacturing. But, this problem is a multiple-sized 1-dimensional cutting stock problem and Linear Programming approaches to get the optimal solution is difficult to be applied due to the problem of explosive computation and memory limitation. In order to overcome this problem, we reform the problem for applying Dynamic Programming and propose a cutting-ironbar planning algorithm searching the sub-optimal solution in the space of fixed amount of combinated columns by using heuristics. Then, we design a graphic user interfaces and screen displays to be operated conveniently in the industry workplace and implement the software using open-source GUI library toolkit, GTK+.

Designing Distributed Real-Time Systems with Decomposition of End-to-End Timing Donstraints (양극단 지연시간의 분할을 이용한 분산 실시간 시스템의 설계)

  • Hong, Seong-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.5
    • /
    • pp.542-554
    • /
    • 1997
  • In this paper, we present a resource conscious approach to designing distributed real-time systems as an extension of our original approach [8][9] which was limited to single processor systems. Starting from a given task graph and a set of end-to-end constraints, we automatically generate task attributes (e.g., periods and deadlines) such that (i) the task set is schedulable, and (ii) the end-to-end timing constraints are satisfied. The method works by first transforming the end-to-end timing constraints into a set of intermediate constraints on task attributes, and then solving the intermediate constraints. The complexity of constraint solving is tackled by reducing the problem into relatively tractable parts, and then solving each sub-problem using heuristics to enhance schedulability. In this paper, we build on our single processor solution and show how it can be extended for distributed systems. The extension to distributed systems reveals many interesting sub-problems, solutions to which are presented in this paper. The main challenges arise from end-to-end propagation delay constraints, and therefore this paper focuses on our solutions for such constraints. We begin with extending our communication scheme to provide tight delay bounds across a network, while hiding the low-level details of network communication. We also develop an algorithm to decompose end-to-end bounds into local bounds on each processor of making extensive use of relative load on each processor. This results in significant decoupling of constraints on each processor, without losing its capability to find a schedulable solution. Finally, we show, how each of these parts fit into our overall methodology, using our previous results for single processor systems.

  • PDF

Spatial Join based on the Transform-Space View (변환공간 뷰를 기반으로한 공간 조인)

  • 이민재;한욱신;황규영
    • Journal of KIISE:Databases
    • /
    • v.30 no.5
    • /
    • pp.438-450
    • /
    • 2003
  • Spatial joins find pairs of objects that overlap with each other. In spatial joins using indexes, original-space indexes such as the R-tree are widely used. An original-space index is the one that indexes objects as represented in the original space. Since original-space indexes deal with sizes of objects, it is difficult to develop a formal algorithm without relying on heuristics. On the other hand, transform-space indexes, which transform objects in the original space into points in the transform space and index them, deal only with points but no sites. Thus, spatial join algorithms using these indexes are relatively simple and can be formally developed. However, the disadvantage of transform-space join algorithms is that they cannot be applied to original-space indexes such as the R-tree containing original-space objects. In this paper, we present a novel mechanism for achieving the best of these two types of algorithms. Specifically, we propose a new notion of the transform-space view and present the transform-space view join algorithm(TSVJ). A transform-space view is a virtual transform-space index based on an original-space index. It allows us to interpret on-the-fly a pre-built original-space index as a transform-space index without incurring any overhead and without actually modifying the structure of the original-space index or changing object representation. The experimental result shows that, compared to existing spatial join algorithms that use R-trees in the original space, the TSVJ improves the number of disk accesses by up to 43.1% The most important contribution of this paper is to show that we can use original-space indexes, such as the R-tree, in the transform space by interpreting them through the notion of the transform-space view. We believe that this new notion provides a framework for developing various new spatial query processing algorithms in the transform space.

Ant Colony System for solving the traveling Salesman Problem Considering the Overlapping Edge of Global Best Path (순회 외판원 문제를 풀기 위한 전역 최적 경로의 중복 간선을 고려한 개미 집단 시스템)

  • Lee, Seung-Gwan;Kang, Myung-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.3
    • /
    • pp.203-210
    • /
    • 2011
  • Ant Colony System is a new meta heuristics algorithms to solve hard combinatorial optimization problems. It is a population based approach that uses exploitation of positive feedback as well as greedy search. It was first proposed for tackling the well known Traveling Salesman Problem. In this paper, we propose the searching method to consider the overlapping edge of the global best path of the previous and the current. This method is that we first determine the overlapping edge of the global best path of the previous and the current will be configured likely the optimal path. And, to enhance the pheromone for the overlapping edges increases the probability that the optimal path is configured. Finally, the performance of Best and Average-Best of proposed algorithm outperforms ACS-3-opt, ACS-Subpath and ACS-Iter algorithms.

Pre-Computation Based Selective Probing (PCSP) Scheme for Distributed Quality of Service (QoS) Routing with Imprecise State Information

  • Lee Won-Ick;Lee Byeong-Gi
    • Journal of Communications and Networks
    • /
    • v.8 no.1
    • /
    • pp.70-84
    • /
    • 2006
  • We propose a new distributed QoS routing scheme called pre-computation based selective probing (PCSP). The PCSP scheme is designed to provide an exact solution to the constrained optimization problem with moderate overhead, considering the practical environment where the state information available for the routing decision is not exact. It does not limit the number of probe messages, instead, employs a qualitative (or conditional) selective probing approach. It considers both the cost and QoS metrics of the least-cost and the best-QoS paths to calculate the end-to-end cost of the found feasible paths and find QoS-satisfying least-cost paths. It defines strict probing condition that excludes not only the non-feasible paths but also the non-optimal paths. It additionally pre-computes the QoS variation taking into account the impreciseness of the state information and applies two modified QoS-satisfying conditions to the selection rules. This strict probing condition and carefully designed probing approaches enable to strictly limit the set of neighbor nodes involved in the probing process, thereby reducing the message overhead without sacrificing the optimal properties. However, the PCSP scheme may suffer from high message overhead due to its conservative search process in the worst case. In order to bound such message overhead, we extend the PCSP algorithm by applying additional quantitative heuristics. Computer simulations reveal that the PCSP scheme reduces message overhead and possesses ideal success ratio with guaranteed optimal search. In addition, the quantitative extensions of the PCSP scheme turn out to bound the worst-case message overhead with slight performance degradation.

An Evaluation of Routing Methods and the Golden Zone Effect in the Warehouses Order Picking System (창고의 복도형 오더 피킹 시스템의 'Golden Zone' 운영과 경로 최적화 알고리즘 효과 비교)

  • Li, Jin;Lee, Yong-Dae;Kim, Sheung-Kown
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.2
    • /
    • pp.67-76
    • /
    • 2011
  • Order picking in automotive service parts warehouses is considered to be the most labor-intensive operation. Such warehouses contain hundreds of thousands of items, but normally 20% of products contribute to about 80% of turnover according to Pareto's 80-20 principle. Therefore most fast moving items are located near an outbound area which is called the "Golden Zone". Order picking routing efficiency is related to productivity and labor cost. However, most companies use simple methods. In this paper, we describe a series of computational experiments over a set of test cases where, we compared various previously existing routing heuristics to an optimal algorithm. We focus on examining the influence of the golden zone on the performance and selection of routing methods. The results obtained show that the optimal routing method increases the productivity at least 17.2%, and all the routing methods have better performance as the pick up rate from the golden zone increases.