• Title/Summary/Keyword: Heterotrophic bacterial number

Search Result 26, Processing Time 0.02 seconds

Distribution and Activity of Heterotrophic Bacterial Communities in Kyeonggi Bay, Korea (경기만의 종속영양 세균군집의 분포 및 활성)

  • 강찬수;이기승;김명운;권개경;김용학;박성주;이건형;김상종
    • Korean Journal of Microbiology
    • /
    • v.28 no.4
    • /
    • pp.324-330
    • /
    • 1990
  • The distribution of physicochemical environmental factors and microbiological factors was studied at 6 sampling sites in Kyeongge Bay of Yellow Sea from October 1989 to October 1990. The total bacterial number, saprophytic bacterial number, petroleum-degrading bacterial number, bacterial biomass, and bacterial secondary production were measured in the range of 0.09~1.24*10$^{7}$ cells/ml, 7~60000 CFUs/ml, 0~240 cells/ml, 14.16~301 .$\mu$g-C/l, and 0.13~11.82 mg-C/m$^{3}$/hr, respectively. The turnover times of $^{3}$H-glucose and $^{3}$H-acetate were in range of 6.5~6984 and 41~24897 hours, respectively. The spatial distribution of heterotrophic bacterial communities were hightly affected by influx of organic pollutants from the coastal area and the seawater exchange with offshore.

  • PDF

Bacterial regrowth in biofilms formed in granular activated carbon filter adsorbers and the bacterial isolation and identification (입상 활성탄 여과지에서 세균의 재성장과 생물막 형성 세균의 분리 및 동정)

  • Lee, Gyucheol;Kwon, Soonbok;Lee, Byungki;Park, Jonggeun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.2
    • /
    • pp.205-212
    • /
    • 2008
  • This study aimed to investigate the biofilm formation, bacterial regrowth, and bacterial community structure in the granular-activated carbon (GAC) filter adsorbers (FAs) used in water treatment plants. In 2005 and 2006, raw water, settled water, GAC FA by depth, and filtered water were collected twice a year from water treatment plants (WTPs) B and S. The number of heterotrophic bacteria, including mesophilic and psychrophilic bacteria, in such collected waters was investigated along with the total number of coliforms therein. Heterotrophic bacteria were detected in most samples, mainly at the surface layers of the GAC FAs, and fewer such bacteria were found in the lower and bottom layers. An increase in the bacterial number, however, was observed in the samples from various depths of the GAC FAs in WTPs B and S compared with the surface layers. An increase in the bacterial number was also detected in the filtered water. This may indicate that there is a regrowth of the bacteria in the GAC FA. Considering, however, that heterotrophic bacteria were not found in the filtered water, it can be deduced that most bacteria are removed in the chlorination process. Coliforms were detected at the surface layer of the GAC FAs, but their regrowth was not observed. MicroLog systems were used to identify the bacteria community distribution. Eight genera and 14 species, including Pseudomonas spp., were detected in WTP B, and 8 genera and 9 species, including Aeromonas spp., in WTP S. Further studies are required to elucidate their role in the biofilms in water treatment processes.

Annual Distribution of Heterotrophic Bacterial Community in the Marine Ranching Ground of Tongyeong Coastal Waters (통영 바다목장 해역의 종속영양세균 군집의 연차적 분포)

  • Kim, Mal-Nam;Lee, Han-Woong;Lee, Jin-Hwan
    • Korean Journal of Environmental Biology
    • /
    • v.25 no.3
    • /
    • pp.273-278
    • /
    • 2007
  • The cell numbers of heterotrophic bacteria inhabiting the surface and bottom sea water harvested from the 5 stations in the marine ranching ground of Tongyeong coastal waters in $2003{\sim}2007$ were examined, and species composition of the heterotrophic bacterial population and dominant species were analyzed as well. Sea water samples collected in summer season contained much higher number of heterotrophic bacteria than those harvested in winter, spring and autumn seasons due to the higher sea water temperature. However the cell number of heterotrophic bacteria did not show a significant dependence on the location of the sampling stations. The cell number of heterotrophic bacteria in the surface sea water harvested in October 2003 and in September 2004 was not discernibly different from that in the bottom sea water and sometimes the former was even fewer than the latter because of the typhoon and localized torrential downpour. The number of heterotrophic bacteria decreased every year. The main bacterial species were Pseudomonas fluorescens TY1, Pseudomonas stutzeri TY2, Acinetobacter lwoffii TY3, Sphingomonas paucimobilis TY4, Burkholderia mallei TY5, Pasteurella haemolytica TY6, Pasteurella multocida TY7, Comamonas acidovorans TY8, Actinobacillus ureae TY9 and Chryseobacterium indologenes TY10. P. fluorescens TY1 and A. lwoffii TY3 were found to be the dominant species.

Preliminary Studies on the Relationship between Reed and Bacterial Communities in the Salt Marsh Environment of Namyang Bay, Korea

  • Kwon, Kae-Kyoung;Je, Jong-Geel
    • Ocean and Polar Research
    • /
    • v.24 no.1
    • /
    • pp.47-53
    • /
    • 2002
  • To evaluate the effect of reed population on the distribution and activities of microorganisms, vertical distribution of heterotrophic bacteria, degradation rate of cellulose, extracellular aminopeptidase activity (APA) and metabolic diversity based on GN2 Microlog plate were measured at two salt marsh stations in Hogok-ri, Namyang Bay, west coast of Korea. The number of heterotrophic bacteria at station 1 (reed population inhabited area) showed 2 to 6 times higher than that of station 2 (exposed area) with exception in the surface layer. Cellulose degradation rates in station 1 showed more than 50%. month-I and higher than that of station 2 (10.2 to 38.4%. $month^{-1}$). Yet the APA at two stations did not show difference except surface layer and suggested that APA might not be a significant factor in degrading marsh plant debris. Lipid class compounds, cell wall polymers and L-alanine were widely used by microorganisms. The number and activities of bacterial populations especially concerned in plant debris degradation seemed to be stimulated by the reed communities.

Bacterial Community and Biological Nitrate Removal: Comparisons of Autotrophic and Heterotrophic Reactors for Denitrification with Raw Sewage

  • Lee, Han-Woong;Park, Yong-Keun;Choi, Eui-So;Lee, Jin-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.11
    • /
    • pp.1826-1835
    • /
    • 2008
  • An autotrophic denitrification reactor (ADR-l) and a heterotrophic denitrification reactor (HDR-2) were operated to remove nitrate and nitrite in an anoxic environment in raw sewage. The $NO_3$-N removal rate of ADR-l was shown to range from 52.8% to 78.7%, which was higher than the $NO_3$-N removal rate of HDR-2. Specific denitrification rates (SDNR) of ADR-l and HDR-2 were 3.0 to 4.0 and 1.1 to $1.2\;mgNO_3$-N/gVSS/h, respectively. From results of restriction fragment length polymorphism (RFLP) of the 16S rRNA gene, Aquaspirillum metamorphum, Alcaligenes defragrans, and Azoarcus sp. were $\beta$-Proteobacteria that are affiliated with denitritying bacteria in the ADR-l. Specifically, Thiobacillus denitrificans was detected as an autotrophic denitrification bacteria. In HDR-2, the $\beta$-Proteobacteria such as Denitritying-Fe-oxidizing bacteria, Alcaligenes defragrans, Acidovorax sp., Azoarcus denitrificans, and Aquaspirillum metamorphum were the main bacteria related to denitrifying bacteria. The $\beta$-and $\alpha$-Proteobacteria were the important bacterial groups in ADR-l, whereas the $\beta$-Proteobacteria were the main bacterial group in HDR-2 based on results of fluorescent in situ hybridization (FISH). The number of Thiobacillus denitrificans increased in ADR-l during the operation period but not in HRD-2. Overall, the data presented here demonstrate that many heterotrophic denitritying bacteria coexisted with autotrophic denitrifying bacteria such as Thiobacillus denitrificans for nitrate removal in ADR-l. On the other hand, only heterotrophic denitritying bacteria were identified as dominant bacterial groups in HDR-2. Our research may provide a foundation for the complete nitrate removal in raw sewage of low-COD concentration under anoxic condition without any external organic carbon or the requirement of post-treatment.

Heterotrophic Bacterial Community and Alkaline Phosphatase Releasing Bacteria in Lake Soyang (소양호에서의 종속영양세균의 종구성 및 Alkaline phosphatase 분비 세균에 관한 연구)

  • 이동훈;안태석;조규송
    • Korean Journal of Microbiology
    • /
    • v.28 no.3
    • /
    • pp.204-209
    • /
    • 1990
  • The total and heterotrophic bacterial distributions, compositions and alkaline phosphatese actibities were analyzed in Lake Soyang from Sep. 1987 to Aug. 1988. The heterotrophic bacteria was small portion, 0.07-2.63% of total bacterial number which ranged from $3.2{\times}10^{5}$ to $3.2{\times}10^{6}$ cells/${\mu}\ell$. The composition of bacterial community was less diverse in summer and at the fish farm site and Peridinium blooming site. Pseudomonas and Flavo bacterium were the dominant genera in all sites. The highest proportion and activity of alkaline phsophatase was appeared in Flavobacterium, while Pseudomonas was the most predominant group.

  • PDF

Distribution of Heterotrophic Bacteria and Extracellular Enzyme Activities of Bacteria in the Sediment of South Sea, Korea (남해 퇴적토에서 종속영양 세균의 분포 및 세포의 효소 활성력)

  • 김상진;이건형
    • Korean Journal of Microbiology
    • /
    • v.30 no.5
    • /
    • pp.383-390
    • /
    • 1992
  • In the periods of July 31 to August 10. 1988 and March 9 to 13. 1989. sediment samples were collected from the South Sea stations (010] to 092]) located in the area from $N 32^{\circ}$/30' to $34^{\circ}$/30', of latitude and from E $123^{\circ}$ 30' to $128^{\circ}$30' of longitude. These samples were analyzed for the number of total heterotrophic bacteria and extracellular digesting enzyme activities. In the 1989 spring period the number of heterotrophic bacteria in the sediment surface layer was increased more than 100 times at the maximum compared to that in the 1988 summer period. The proportion of fresh water bacteria to total heterotrophic bacteria was also higher in the spring period than the summer period. The extracellular digesting enzyme activities were higher in spring season than summer. Although the water content of sediment in the spring period was lower than that the summer period. the ash weight indicating organic material content was higher. These results means that the diameters of sediment particles were larger in spring than summer but the input of organic material into the sediment was greater. Based on these results bacterial distributions in the sediment layer of South Sea depend greatly on the season due to the effect of fresh water. During the spring season plankton could grow extensively owing to the inorganic nutrients input by the vertical mixing in the water column, then be precipitated into the sediment. Organic nutrients supplied from enzymatic degradation of polymeric particle from plankton can increase the bacterial number, too.

  • PDF

Distribution of Heterotrophic Bacterial Flora in Soil on the King George Island (Antarctica) and Their Enzyme Activities (남극 King Geroge Island 토양의 종속영양 세균 분포상과 효소 활성도)

  • 김상진;이승복
    • Korean Journal of Microbiology
    • /
    • v.28 no.3
    • /
    • pp.199-203
    • /
    • 1990
  • To study distribution of bacterial flora and their biochemical characteristics in the Antarctic soilecosystem, these experiments were performed during the austral summer(Feb., 1989) on the King George Island, Antarctica. The numbers of heterotrophic bacterial colonies and extracellular enzyme actibities were estimated from the Antarctic terrestrial soils which were sampled from 17 different locations near Sejong station (Korea) and Teniente Jubany station (Argentina) on the King George Island. The numbers of heterotrophic bacterial colonies were extremely variable with sampling sites and incubation temperatures. Arithmetric average numbers were $2.5\times 10^{4}$, $2.7\times 10^{7}$ , $6.9\times 10^{5}$ CFU/$cm^{3}$ soil at the incubation temperature of $37^{\circ}C$, $25^{\circ}C$ and $4^{\circ}C$, respectively. The activities of extracellular $\alpha$-glucosidase, $\beta$-glucosidase and N-acetyl-$\beta$-glucosaminidase were shown as similar mean percentage in the colonies obtained at different temperatures. Mean value of protease activities, however, was remarkably higher (92%) in the colonies grown at $4^{\circ}C$,.

  • PDF

Heterotrophic Bacterial Growth on Hoses in a Neonatal Water Distribution System

  • Buffet-Bataillon, Sylvie;Bonnaure-Mallet, Martine;De La Pintiere, Armelle;Defawe, Guy;Gautier-Lerestif, Anne Lise;Fauveau, Severine;Minet, Jacques
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.4
    • /
    • pp.779-781
    • /
    • 2010
  • After preliminary tests indicated an increased number of heterotrophic bacteria, we investigated possible sources of contamination in a neonatal intensive care unit (NICU) water distribution system. Scanning electron microscopic examination of flexible metallic hoses associated with the system revealed the presence of a biofilm; partial 16S rDNA sequencing revealed that the biofilm contained Blastomonas natatoria. Purgation of the water system three times a day, reinforced faucet cleaning, decreasing the cold water temperature to $12^{\circ}C$, and six repeated chlorinations at concentrations as high as 2 mg/l were not sufficient to eradicate the bacterial contamination. Replacing all of the rubber-interior flexible metallic hoses with teflon-lined hoses, followed by heating the water to $70^{\circ}C$, successfully controlled the bacteria.

Bacterial Biomass and Secondary Productivity in Naktong River Estuary (낙동강 하구생태계의 세균 생물량과 이차생산성)

  • Song, Sung-Joo;Kwon, O-Seob;Lee, Hye-Joo;Lee, Jin-Ae;Kim, Young-Eui
    • Korean Journal of Microbiology
    • /
    • v.32 no.3
    • /
    • pp.238-244
    • /
    • 1994
  • To investigate the bacterial potentials for utilizing dissolved organic matter in highly eutrophic estuary, the annual fluctuations of microbiological and physicochemical environmental parameters were analyzed in Naktong River Estuary. Total bacterial number ranged from 0.33 to $2.09{\times}10^7$ cells/ml, and correlated with the heterotrophic bacterial numbers in more eutrophic sites, especially. Bacterial biovolume and biomass varied between 0.064 and 0.156 2.09${\mu}m^3$/cell, 0.163 and 1.036 ${\mu}g$-C/ml, respectively. Bacterial secondary productivity ranged from 0.24 to 60.86 ${\mu}g$-C/l/h, and showed high correlations with the environmental parameters of pollution indicator. The seasonal variation pattern of bacterial productivity in freshwater sites was high in winter and low in summer, which was interpreted as the results of pollution loads varied with the amount of rainfall. In seawater site, the pattern was different from those of freshwater sites; high in summer and low in winter. In this site, the values of bacterial productivity showed positive correaltions with chlorophyll a, heterotrophic bacterial number, and temperature (r>0.5, p<0.05). These results suggested that the main source of organic matter which influences the bacterial productivity may be allochthonous materials in the upper freshwater zone of Naktong River Barrage, and autochthonous algal excretory products in the lower seawater zone of Naktong River Barrage.

  • PDF