• Title/Summary/Keyword: Heteroscedasticity

Search Result 115, Processing Time 0.018 seconds

Testing for Grouped Heteroscedasticity in Linear Regression Model

  • Song, Seuck Heun;Choi, Moon Kyung
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.3
    • /
    • pp.475-484
    • /
    • 2004
  • This paper consider the testing problem of grouped heteroscedasticity in the linear regression model. We provide the Lagrange Multiplier(LM), Wald, Likelihood Ratio (LR) test statistis for testing of grouped heteroscedasticity. Monte Carlo experiments are conducted to study the performance of these tests.

Robust tests for heteroscedasticity using outlier detection methods (이상치 탐지법을 이용한 강건 이분산 검정)

  • Seo, Han Son;Yoon, Min
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.3
    • /
    • pp.399-408
    • /
    • 2016
  • There is a need to detect heteroscedasticity in a regression analysis; however, it invalidates the standard inference procedure. The diagnostics on heteroscedasticity may be distorted when both outliers and heteroscedasticity exist. Available heteroscedasticity detection methods in the presence of outliers usually use robust estimators or separating outliers from the data. Several approaches have been suggested to identify outliers in the heteroscedasticity problem. In this article conventional tests on heteroscedasticity are modified by using a sequential outlier detection methods to separate outliers from contaminated data. The performance of the proposed method is compared with original tests by a Monte Carlo study and examples.

Diagnostic In Spline Regression Model With Heteroscedasticity

  • Lee, In-Suk;Jung, Won-Tae;Jeong, Hye-Jeong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.6 no.1
    • /
    • pp.63-71
    • /
    • 1995
  • We have consider the study of local influence for smoothing parameter estimates in spline regression model with heteroscedasticity. Practically, generalized cross-validation does not work well in the presence of heteroscedasticity. Thus we have proposed the local influence measure for generalized cross-validation estimates when errors are heteroscedastic. And we have examined effects of diagnostic by above measures through Hyperinflation data.

  • PDF

Statistical Analysis of Transfer Function Models with Conditional Heteroscedasticity

  • Baek, J.S.;Sohn, K.T.;Hwang, S.Y.
    • Journal of the Korean Statistical Society
    • /
    • v.31 no.2
    • /
    • pp.199-212
    • /
    • 2002
  • This article introduces transfer function model (TFM) with conditional heteroscedasticity where ARCH concept is built into the traditional TFM of Box and Jenkins (1976). Model building strategies such as identification, estimation and diagnostics of the model are discussed and are illustrated via empirical study including simulated data and real data as well. Comparisons with the classical TFM are also made.

Preliminary Identification of Branching-Heteroscedasticity for Tree-Indexed Autoregressive Processes

  • Hwang, S.Y.;Choi, M.S.
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.6
    • /
    • pp.809-816
    • /
    • 2011
  • A tree-indexed autoregressive(AR) process is a time series defined on a tree which is generated by a branching process and/or a deterministic splitting mechanism. This short article is concerned with conditional heteroscedastic structure of the tree-indexed AR models. It has been usual in the literature to analyze conditional mean structure (rather than conditional variance) of tree-indexed AR models. This article pursues to identify quadratic conditional heteroscedasticity inherent in various tree-indexed AR models in a unified way, and thus providing some perspectives to the future works in this area. The identical conditional variance of sisters sharing the same mother will be referred to as the branching heteroscedasticity(BH, for short). A quasilikelihood but preliminary estimation of the quadratic BH is discussed and relevant limit distributions are derived.

A Study on the Short Term Internet Traffic Forecasting Models on Long-Memory and Heteroscedasticity (장기기억 특성과 이분산성을 고려한 인터넷 트래픽 예측을 위한 시계열 모형 연구)

  • Sohn, H.G.;Kim, S.
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.6
    • /
    • pp.1053-1061
    • /
    • 2013
  • In this paper, we propose the time series forecasting models for internet traffic with long memory and heteroscedasticity. To control and forecast traffic volume, we first introduce the traffic forecasting models which are determined by the volatility and heteroscedasticity of the traffic. We then analyze and predict the heteroscedasticity and the long memory properties for forecasting traffic volume. Depending on the characteristics of the traffic, Fractional ARIMA model, Fractional ARIMA-GARCH model are applied and compared with the MAPE(Mean Absolute Percentage Error) Criterion.

Bayesian analysis of financial volatilities addressing long-memory, conditional heteroscedasticity and skewed error distribution

  • Oh, Rosy;Shin, Dong Wan;Oh, Man-Suk
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.5
    • /
    • pp.507-518
    • /
    • 2017
  • Volatility plays a crucial role in theory and applications of asset pricing, optimal portfolio allocation, and risk management. This paper proposes a combined model of autoregressive moving average (ARFIMA), generalized autoregressive conditional heteroscedasticity (GRACH), and skewed-t error distribution to accommodate important features of volatility data; long memory, heteroscedasticity, and asymmetric error distribution. A fully Bayesian approach is proposed to estimate the parameters of the model simultaneously, which yields parameter estimates satisfying necessary constraints in the model. The approach can be easily implemented using a free and user-friendly software JAGS to generate Markov chain Monte Carlo samples from the joint posterior distribution of the parameters. The method is illustrated by using a daily volatility index from Chicago Board Options Exchange (CBOE). JAGS codes for model specification is provided in the Appendix.

Heteroscedasticity of Random Effects in Crossover Design

  • Ahn, Chul-H.
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.11a
    • /
    • pp.79-83
    • /
    • 2002
  • A phase III clinical trial of a new drug for neutropenia induced by chemotherapy is presented and consider adding random effects in crossover design which was used in the clinical study. The diagnostics for its heteroscedasticity based on score statistic is derived for detecting homoscedasticity of errors in crossover design. A small simulation study is peformed to investigate the finite sample behaviour of the test statistic which is known to have an asymptotic chi-square distribution under the null hypothesis.

  • PDF

Forecasting Internet Traffic by Using Seasonal GARCH Models

  • Kim, Sahm
    • Journal of Communications and Networks
    • /
    • v.13 no.6
    • /
    • pp.621-624
    • /
    • 2011
  • With the rapid growth of internet traffic, accurate and reliable prediction of internet traffic has been a key issue in network management and planning. This paper proposes an autoregressive-generalized autoregressive conditional heteroscedasticity (AR-GARCH) error model for forecasting internet traffic and evaluates its performance by comparing it with seasonal autoregressive integrated moving average (ARIMA) models in terms of root mean square error (RMSE) criterion. The results indicated that the seasonal AR-GARCH models outperformed the seasonal ARIMA models in terms of forecasting accuracy with respect to the RMSE criterion.

Accuracy Estimation of Video Image Detector Considering Heteroscedasticity (이분산성을 고려한 영상검지기 정확도 추정)

  • Lee, Cheong-Won;Song, Yeong-Hwa
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.2 s.95
    • /
    • pp.7-15
    • /
    • 2007
  • The accuracy of a Video Image Detector (VID) is gradually reduced due to various environmental and mechanical factors. However, there has been no systematic research about the decrease of VID accuracy. To maintain a proper level of VID accuracy for advanced traffic management, a regular VID calibration process needs to be introduced. However, the calibration cannot be performed frequently because of the cost. In this study, the researchers collected field data for accuracy estimation and inferred an accuracy decreasing function by using regression and considering the heteroscedasticity problem. Using the invented data collection equipment which was used for checking adaptability, some data in the field were collected and analyzed. Although the data were limited, the results are promising. More data need to be investigated in the future and this study will help to maintain the data quality for broad utilization of the data in ITS centers.