DOI QR코드

DOI QR Code

Robust tests for heteroscedasticity using outlier detection methods

이상치 탐지법을 이용한 강건 이분산 검정

  • Seo, Han Son (Department of Applied Statistics, Konkuk University) ;
  • Yoon, Min (Department of Statistics, Pukyong National University)
  • 서한손 (건국대학교 응용통계학과) ;
  • 윤민 (부경대학교 통계학과)
  • Received : 2015.11.02
  • Accepted : 2016.03.12
  • Published : 2016.04.30

Abstract

There is a need to detect heteroscedasticity in a regression analysis; however, it invalidates the standard inference procedure. The diagnostics on heteroscedasticity may be distorted when both outliers and heteroscedasticity exist. Available heteroscedasticity detection methods in the presence of outliers usually use robust estimators or separating outliers from the data. Several approaches have been suggested to identify outliers in the heteroscedasticity problem. In this article conventional tests on heteroscedasticity are modified by using a sequential outlier detection methods to separate outliers from contaminated data. The performance of the proposed method is compared with original tests by a Monte Carlo study and examples.

회귀분석에서 이분산이 발생할 경우 표준적 추정절차에 따른 결과는 유효하지 않게 되므로 이를 확인하는 것이 필요하다. 이분산 문제와 더불어 이상치가 함께 존재하면 이분산에 관한 진단은 왜곡될 수 있다. 이상치가 존재할 때 이분산을 진단하는 기존의 방법들은 강건통계량을 이용하거나 이상치를 제거하는 접근법을 사용한다. 이분산 문제에서 이상치를 탐지하기 위하여 여러 가지 접근법이 제시되었다. 본 연구에서는 이분산 진단과정에서 이상치를 배제하기 위하여 기존의 이분산 검정과정에 순차적 이상치 탐지법을 적용하는 절차를 제시한다. 제시된 방법은 모의실험 및 예제를 통해 기존의 검정방법과 검정력을 비교한다.

Keywords

References

  1. Anscombe, F. J. (1961). Examination of residuals, In Proceedings of 4th Berkeley Symposium, 1, 1-36.
  2. Atkinson, A. C. (1985). Plots, Transformations and Regression, Oxford University Press, Oxford.
  3. Bickel, P. (1978). Using residuals robustly I: tests for heteroscedasticity, nonlinearity, Annals of Statistics, 6, 266-291. https://doi.org/10.1214/aos/1176344124
  4. Breusch, T. and Pagan, A. (1979). A simple test for heteroscedasticity and random coefficient variation, Econometrica, 47, 1287-1294. https://doi.org/10.2307/1911963
  5. Carroll, R. J. and Ruppert, D. (1981). On robust tests for heteroscedasticity, Annals of Statistics, 9, 205-209.
  6. Carroll, R. J. and Ruppert, D. (1988). Transformation and Weighting in Regression, 2nd ed., Wiley, New York.
  7. Cheng, T.-C. (2012). On simultaneously identifying outliers and heteroscedasticity without specific form, Computational Statistics and Data Analysis, 56, 2258-2272. https://doi.org/10.1016/j.csda.2012.01.004
  8. Cook, R. D. and Weisberg, S. (1983). Diagnostics for heteroscedasticity in regression, Biometrika, 70, 1-10. https://doi.org/10.1093/biomet/70.1.1
  9. Draper, N. R. and Smith, H. (1998). Applied Regression Analysis, 3rd ed., John Wiley, New York.
  10. Gentleman, J. F. and Wilk, M. B. (1975). Detecting outliers II: supplementing the direct analysis of residuals, Biometrics, 31, 387-410. https://doi.org/10.2307/2529428
  11. Giloni, A., Simonoff, J. S., and Sengupta, B. (2006). Robust weighted LAD regression, Computational Statistics and Data Analysis, 50, 3124-3140. https://doi.org/10.1016/j.csda.2005.06.005
  12. Goldfeld, S. M. and Quandt, R. E. (1965). Some tests for homoscedasticity, Journal of the American Statistical Association, 60, 539-547. https://doi.org/10.1080/01621459.1965.10480811
  13. Gujarati, D. (2002). Basic Econometrics, 4th ed., McGraw-Hill, New York.
  14. Hadi, A. S., and Simonoff, J. S. (1993). Procedures for the identification of multiple outliers in linear models, Journal of the American Statistical Association, 88, 1264-1272. https://doi.org/10.1080/01621459.1993.10476407
  15. Hammerstrom, T. (1981). Asymptotically optimal tests for heteroscedasticity in the general linear model, Annals of Statistics, 9, 368-380. https://doi.org/10.1214/aos/1176345402
  16. Horn, P. (1981). Heteroscedasticity of residuals: a non-parametric alternative to the Goldfeld-Quandt peak test, Communications in Statistics-Theory and Methods, 10, 795-808. https://doi.org/10.1080/03610928108828074
  17. Hubert, M. and Rousseeuw, P. J. (1997). Robust regression with both continuous and binary regressors, Journal of Statistical Planning and Inference, 57, 153-163. https://doi.org/10.1016/S0378-3758(96)00041-9
  18. Jajo, N. K. (2005). A review of robust regression an diagnostic procedures in linear regression, Acta Math- ematicae Applicatae Sinica, 21, 209-224.
  19. Kianifard, F. and Swallow, W. H. (1989). Using recursive residuals, calculated on adaptively-ordered observations, to identify outliers in linear regression, Biometrics, 45, 571-585. https://doi.org/10.2307/2531498
  20. Kianifard, F. and Swallow, W. H. (1990). A Monte Carlo comparison of five procedures for identifying outliers in linear regression, Communications in Statistics-Theory and Methods, 19, 1913-1938. https://doi.org/10.1080/03610929008830300
  21. Koutsoyiannis, A. (2001). Theory of Econometrics, 2nd ed., Palgrave, New York.
  22. Marasinghe, M. G. (1985). A multistage procedure for detecting several outliers in linear regression, Technometrics, 27, 395-399. https://doi.org/10.1080/00401706.1985.10488078
  23. Montgomery, D. C., Peck, E. A., and Vining, G. G. (2001). Introduction to Linear Regression Analysis, 3rd ed., Wiley, New York.
  24. Paul, S. R. and Fung, K. Y. (1991). A generalized extreme studentized residual multiple-outlier-detection procedure in linear regression, Technometrics, 33, 339-348. https://doi.org/10.1080/00401706.1991.10484839
  25. Pindyck, S. R. and Rubinfeld, L. D. (1998). Econometric Models and Econometric Forecasts, 4th ed., Irwin/McGraw-Hill, New York.
  26. Rana, M. S., Midi, H., and Imon, A. H. M. R. (2008). A robust modification of the Goldfeld-Quandt test for the detection of heteroscedasticity in the presence of outliers, Journal of Mathematics and Statistics, 4, 277-283. https://doi.org/10.3844/jmssp.2008.277.283
  27. Ryan, T. P. (2008). Modern Regression Methods, 2nd ed., Wiley, New York.
  28. Weisberg, S. (2005). Applied Linear Regression, Wiley, New York.
  29. White, H. (1980). Heteroscedasticity-consistent covariance matrix estimator and a direct test for heteroscedasticity, Econometrica, 48, 817-838. https://doi.org/10.2307/1912934