References
- Anscombe, F. J. (1961). Examination of residuals, In Proceedings of 4th Berkeley Symposium, 1, 1-36.
- Atkinson, A. C. (1985). Plots, Transformations and Regression, Oxford University Press, Oxford.
- Bickel, P. (1978). Using residuals robustly I: tests for heteroscedasticity, nonlinearity, Annals of Statistics, 6, 266-291. https://doi.org/10.1214/aos/1176344124
- Breusch, T. and Pagan, A. (1979). A simple test for heteroscedasticity and random coefficient variation, Econometrica, 47, 1287-1294. https://doi.org/10.2307/1911963
- Carroll, R. J. and Ruppert, D. (1981). On robust tests for heteroscedasticity, Annals of Statistics, 9, 205-209.
- Carroll, R. J. and Ruppert, D. (1988). Transformation and Weighting in Regression, 2nd ed., Wiley, New York.
- Cheng, T.-C. (2012). On simultaneously identifying outliers and heteroscedasticity without specific form, Computational Statistics and Data Analysis, 56, 2258-2272. https://doi.org/10.1016/j.csda.2012.01.004
- Cook, R. D. and Weisberg, S. (1983). Diagnostics for heteroscedasticity in regression, Biometrika, 70, 1-10. https://doi.org/10.1093/biomet/70.1.1
- Draper, N. R. and Smith, H. (1998). Applied Regression Analysis, 3rd ed., John Wiley, New York.
- Gentleman, J. F. and Wilk, M. B. (1975). Detecting outliers II: supplementing the direct analysis of residuals, Biometrics, 31, 387-410. https://doi.org/10.2307/2529428
- Giloni, A., Simonoff, J. S., and Sengupta, B. (2006). Robust weighted LAD regression, Computational Statistics and Data Analysis, 50, 3124-3140. https://doi.org/10.1016/j.csda.2005.06.005
- Goldfeld, S. M. and Quandt, R. E. (1965). Some tests for homoscedasticity, Journal of the American Statistical Association, 60, 539-547. https://doi.org/10.1080/01621459.1965.10480811
- Gujarati, D. (2002). Basic Econometrics, 4th ed., McGraw-Hill, New York.
- Hadi, A. S., and Simonoff, J. S. (1993). Procedures for the identification of multiple outliers in linear models, Journal of the American Statistical Association, 88, 1264-1272. https://doi.org/10.1080/01621459.1993.10476407
- Hammerstrom, T. (1981). Asymptotically optimal tests for heteroscedasticity in the general linear model, Annals of Statistics, 9, 368-380. https://doi.org/10.1214/aos/1176345402
- Horn, P. (1981). Heteroscedasticity of residuals: a non-parametric alternative to the Goldfeld-Quandt peak test, Communications in Statistics-Theory and Methods, 10, 795-808. https://doi.org/10.1080/03610928108828074
- Hubert, M. and Rousseeuw, P. J. (1997). Robust regression with both continuous and binary regressors, Journal of Statistical Planning and Inference, 57, 153-163. https://doi.org/10.1016/S0378-3758(96)00041-9
- Jajo, N. K. (2005). A review of robust regression an diagnostic procedures in linear regression, Acta Math- ematicae Applicatae Sinica, 21, 209-224.
- Kianifard, F. and Swallow, W. H. (1989). Using recursive residuals, calculated on adaptively-ordered observations, to identify outliers in linear regression, Biometrics, 45, 571-585. https://doi.org/10.2307/2531498
- Kianifard, F. and Swallow, W. H. (1990). A Monte Carlo comparison of five procedures for identifying outliers in linear regression, Communications in Statistics-Theory and Methods, 19, 1913-1938. https://doi.org/10.1080/03610929008830300
- Koutsoyiannis, A. (2001). Theory of Econometrics, 2nd ed., Palgrave, New York.
- Marasinghe, M. G. (1985). A multistage procedure for detecting several outliers in linear regression, Technometrics, 27, 395-399. https://doi.org/10.1080/00401706.1985.10488078
- Montgomery, D. C., Peck, E. A., and Vining, G. G. (2001). Introduction to Linear Regression Analysis, 3rd ed., Wiley, New York.
- Paul, S. R. and Fung, K. Y. (1991). A generalized extreme studentized residual multiple-outlier-detection procedure in linear regression, Technometrics, 33, 339-348. https://doi.org/10.1080/00401706.1991.10484839
- Pindyck, S. R. and Rubinfeld, L. D. (1998). Econometric Models and Econometric Forecasts, 4th ed., Irwin/McGraw-Hill, New York.
- Rana, M. S., Midi, H., and Imon, A. H. M. R. (2008). A robust modification of the Goldfeld-Quandt test for the detection of heteroscedasticity in the presence of outliers, Journal of Mathematics and Statistics, 4, 277-283. https://doi.org/10.3844/jmssp.2008.277.283
- Ryan, T. P. (2008). Modern Regression Methods, 2nd ed., Wiley, New York.
- Weisberg, S. (2005). Applied Linear Regression, Wiley, New York.
- White, H. (1980). Heteroscedasticity-consistent covariance matrix estimator and a direct test for heteroscedasticity, Econometrica, 48, 817-838. https://doi.org/10.2307/1912934