• Title/Summary/Keyword: Heteropolymer

Search Result 4, Processing Time 0.016 seconds

Cooperative Activity of Subunits of Human Ferritin Heteropolymers in Escherichia coli

  • Lee, Jung;Seo, Hyang-Yun;Jeon, Eun-Soon;Park, Ok-Soon;Lee, Kang-Min;Park, Chung-Ung;Kim, Kyung-Suk
    • BMB Reports
    • /
    • v.34 no.4
    • /
    • pp.365-370
    • /
    • 2001
  • We constructed a comparative expression system in order to produce recombinant human ferritin homo- and heteropolymers in Escherichia coli. Human ferritin H-(hfH) and L-chain (hfL) genes were expressed without amino acid changes under the control of a tac promoter. Ferritin heteropolymers of varying subunit composition were also produced by combining two different expression systems, a bicistronic expression system and a coplasmid expression system. As a result, recombinant H-chain ferritin and ferritin heteropolymers were catalytically active in forming iron core in vivo. In particular, the ferritin heteropolymer that is composed of 7% H-subunit and 93% L-subunit was capable of forming an iron core of the protein, while the L-chain ferritin homopolymer was inactive in vivo. This result indicates that the two H-subunits (i.e., 7% H-subunit content) are important to keep ferritin active in the cells. In addition, human ferritins were identified as the major iron binding proteins in the transformed cells. Also, the amount of iron bound to the recombinant ferritins was proportional to the H-subunit content in ferritin heteropolymers in vivo.

  • PDF

Study on Electrospinning Behavior of Homogeneously Deacetylated Chitins (균일계 탈아세틸화된 키틴의 전기방사성에 관한 연구)

  • ;Xinying Geng
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.277-278
    • /
    • 2003
  • 키틴은 셀룰로오스와 더불어 자연계에 가장 많이 존재하는 천연고분자(선형다당)로서 $\beta$(1$\longrightarrow$4)-2-deoxy-2-acetamido-D-glucopyranose를 기본단위로 하고, 키토산(chitosan)은 천연적으로는 몇몇 미생물에서 발견되며, 키틴의 탈아세틸화반응(deacetylation)에 의해 생성되는 유도체로서 $\beta$(1$\longrightarrow$4)-2-deoxy-2-amino-D-glucopyranose를 기본단위로 한다는 점에서 상이하다. 하지만 키틴과 키토산은 각 기본단위가 반복된 homopolymer가 아니고 서로 일정 정도의 상대 기본단위를 함유하므로 일종의 공중합체 또는 heteropolymer라고 할 수 있으며, 그 조성비 즉 탈아세틸화도 (degree of deacetylation, 이하 DD)에 따라 키틴과 키티산으로 나누어진다.[1] (중략)

  • PDF

Structure and Foaming Properties of Viscous Exopolysaccharides from a Wild Grape-Associated Basidiomycetous Yeast Papiliotrema flavescens Formerly Known as Cryptococcus flavescens

  • Oluwa, Salomon Woye
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.11
    • /
    • pp.1739-1749
    • /
    • 2020
  • Exopolysaccharide produced by the yeast Papiliotrema flavescens, isolated from wine grape berries of Champagne vineyard, was investigated for both chemical and functional characterization. SECMALLS and colorimetric assay analyses showed that the EPS is a high MW heteropolymer (2.37 × 106 g/mol) majorily consisting of mannose, glucose, xylose and glucuronic acid as monosaccharide constituents, with two substituents (sulphate and phosphate groups), and a minor protein moiety. Structural enchainment of these carbohydrates based on methylation, GC-MS and NMR analyses revealed a linear main backbone built up of α-(1 → 3)-D-mannopyranosyl residues on which are branched side chains consisting of a single β-D-glucopyranosyluronic acid residue and β-(1 → 2)-xylopyranoses (2-5 residues). Suggestion of some xylopyranose side chains containing a mannose residue at the nonreducing terminal end was also proposed. This is first report on EPSs from the grape P. flavescens yeast with such structural characteristics. Furthermore, investigations for valuating the application performance of these EPS in relation with their structural features were carried out in 8% alcohol experiment solutions. Very exceptional viscosifying and foaming properties were reported by comparison with commercial biopolymers such as Arabic, gellan and xanthan gums. The intrinsic properties of the natural biopolymer from this wild grape-associated P. flavescens yeast make it a potential candidate for use in various biotechnology applications.

Phosphorylation and Reorganization of Keratin Networks: Implications for Carcinogenesis and Epithelial Mesenchymal Transition

  • Kim, Hyun Ji;Choi, Won Jun;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.23 no.4
    • /
    • pp.301-312
    • /
    • 2015
  • Metastasis is one of hallmarks of cancer and a major cause of cancer death. Combatting metastasis is highly challenging. To overcome these difficulties, researchers have focused on physical properties of metastatic cancer cells. Metastatic cancer cells from patients are softer than benign cancer or normal cells. Changes of viscoelasticity of cancer cells are related to the keratin network. Unexpectedly, keratin network is dynamic and regulation of keratin network is important to the metastasis of cancer. Keratin is composed of heteropolymer of type I and II. Keratin connects from the plasma membrane to nucleus. Several proteins including kinases, and protein phosphatases bind to keratin intermediate filaments. Several endogenous compounds or toxic compounds induce phosphorylation and reorganization of keratin network in cancer cells, leading to increased migration. Continuous phosphorylation of keratin results in loss of keratin, which is one of the features of epithelial mesenchymal transition (EMT). Therefore, several proteins involved in phosphorylation and reorganization of keratin also have a role in EMT. It is likely that compounds controlling phosphorylation and reorganization of keratin are potential candidates for combating EMT and metastasis.