• Title/Summary/Keyword: Heterologous

Search Result 466, Processing Time 0.03 seconds

Bacillus subtilis Spore Surface Display Technology: A Review of Its Development and Applications

  • Zhang, Guoyan;An, Yingfeng;Zabed, Hossain M.;Guo, Qi;Yang, Miaomiao;Yuan, Jiao;Li, Wen;Sun, Wenjin;Qi, Xianghui
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.179-190
    • /
    • 2019
  • Bacillus subtilis spore surface display (BSSD) technology is considered to be one of the most promising approaches for expressing heterologous proteins with high activity and stability. Currently, this technology is used for various purposes, such as the production of enzymes, oral vaccines, drugs and multimeric proteins, and the control of environmental pollution. This paper presents an overview of the latest developments in BSSD technology and its application in protein engineering. Finally, the major limitations of this technology and future directions for its research are discussed.

Bombyx mori β-tubulin Promoter for High-level Expression of Heterologous Genes

  • Park, Kwanho;Goo, Tae-Won
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.39 no.1
    • /
    • pp.22-28
    • /
    • 2019
  • We previously isolated 9 clones that show stronger signal compared to Bombyx mori cytoplasmic actin gene (BmA3) by using a dot blot hybridization. In this study, we focused on one clone among these clones which has high amino acid similarity with ${\beta}$-tubulin gene of B. mori. This clone was ubiquitously expressed in all tissues and developmental stage of B. mori. As result of promoter assay using dual luciferase assay system, we found the highest transcription activity region (-750/-1) in the 5'-flanking region of ${\beta}$-tubulin gene, which has about 47 fold more intensive promoter activity than BmA3 promoter. Moreover, the ${\beta}$-tubulin promoter was normally regulated in Bm5, Sf9, and S2 cells. Therefore, we suggest that ${\beta}$-tubulin promoter may be used more powerful and effectively for transgene expression in various insects containing B. mori as a universal promoter.

Biosynthesis of Chondroitin in Engineered Corynebacterium glutamicum

  • Cheng, Fangyu;Luozhong, Sijin;Yu, Huimin;Guo, Zhigang
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.392-400
    • /
    • 2019
  • Chondroitin, the precursor of chondroitin sulfate, which is an important polysaccharide, has drawn significant attention due to its applications in many fields. In the present study, a heterologous biosynthesis pathway of chondroitin was designed in a GRAS (generally recognized as safe) strain C. glutamicum. CgkfoC and CgkfoA genes with host codon preference were synthesized and driven by promoter Ptac, which was confirmed as a strong promoter via GFPuv reporter assessment. In a lactate dehydrogenase (ldh) deficient host, intracellular chondroitin titer increased from 0.25 to 0.88 g/l compared with that in a wild-type host. Moreover, precursor enhancement via overexpressing precursor synthesizing gene ugdA further improved chondroitin titers to 1.09 g/l. Chondroitin production reached 1.91 g/l with the engineered strain C. glutamicum ${\Delta}L-CgCAU$ in a 5-L fed-batch fermentation with a single distribution $M_w$ of 186 kDa. This work provides an alternative, safe and novel means of producing chondroitin for industrial applications.

Metabolic Engineering for Improved Fermentation of L-Arabinose

  • Ye, Suji;Kim, Jeong-won;Kim, Soo Rin
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.339-346
    • /
    • 2019
  • L-Arabinose, a five carbon sugar, has not been considered as an important bioresource because most studies have focused on D-xylose, another type of five-carbon sugar that is prevalent as a monomeric structure of hemicellulose. In fact, L-arabinose is also an important monomer of hemicellulose, but its content is much more significant in pectin (3-22%, g/g pectin), which is considered an alternative biomass due to its low lignin content and mass production as juice-processing waste. This review presents native and engineered microorganisms that can ferment L-arabinose. Saccharomyces cerevisiae is highlighted as the most preferred engineering host for expressing a heterologous arabinose pathway for producing ethanol. Because metabolic engineering efforts have been limited so far, with this review as momentum, more attention to research is needed on the fermentation of L-arabinose as well as the utilization of pectin-rich biomass.

Genetic Manipulation and Transformation Methods for Aspergillus spp.

  • Son, Ye-Eun;Park, Hee-Soo
    • Mycobiology
    • /
    • v.49 no.2
    • /
    • pp.95-104
    • /
    • 2021
  • Species of the genus Aspergillus have a variety of effects on humans and have been considered industrial cell factories due to their prominent ability for manufacturing several products such as heterologous proteins, secondary metabolites, and organic acids. Scientists are trying to improve fungal strains and re-design metabolic processes through advanced genetic manipulation techniques and gene delivery systems to enhance their industrial efficiency and utility. In this review, we describe the current status of the genetic manipulation techniques and transformation methods for species of the genus Aspergillus. The host strains, selective markers, and experimental materials required for the genetic manipulation and fungal transformation are described in detail. Furthermore, the advantages and disadvantages of these techniques are described.

Engineering of Sulfolobus acidocaldarius for Hemicellulosic Biomass Utilization

  • Lee, Areum;Jin, Hyeju;Cha, Jaeho
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.5
    • /
    • pp.663-671
    • /
    • 2022
  • The saccharification of cellulose and hemicellulose is essential for utilizing lignocellulosic biomass as a biofuel. While cellulose is composed of glucose only, hemicelluloses are composed of diverse sugars such as xylose, arabinose, glucose, and galactose. Sulfolobus acidocaldarius is a good potential candidate for biofuel production using hemicellulose as this archaeon simultaneously utilizes various sugars. However, S. acidocaldarius has to be manipulated because the enzyme that breaks down hemicellulose is not present in this species. Here, we engineered S. acidocaldarius to utilize xylan as a carbon source by introducing xylanase and β-xylosidase. Heterologous expression of β-xylosidase enhanced the organism's degradability and utilization of xylooligosaccharides (XOS), but the mutant still failed to grow when xylan was provided as a carbon source. S. acidocaldarius exhibited the ability to degrade xylan into XOS when xylanase was introduced, but no further degradation proceeded after this sole reaction. Following cell growth and enzyme reaction, S. acidocaldarius successfully utilized xylan in the synergy between xylanase and β-xylosidase.

Cell Surface Antigenic Relationship of Pathogenic Mycobacteria (병원성 Mycobacteria의 세포표면항원간의 항원적 상관 관계)

  • Kwon, Hyuk-Han;Saito, Hajime;Kim, Sang-Jae
    • Tuberculosis and Respiratory Diseases
    • /
    • v.40 no.5
    • /
    • pp.483-494
    • /
    • 1993
  • Cell surface antigenic relationships between pathogenic mycobacteria have been investigated by the enzyme-linked immunosorbent assay using phenolkilled cells and their rabbits antisera. Homologous and heterologous reactions of Mycobacterium avium-intracellulare antisera before and after homologous and heterologous absorption revealed a close antigenic relationship between strains of the same species and between species if they were members of M. avium(MA)-intracellulare(MI)-scrofulaceum(MG) complex. MAI sera showed a considerable reaction with M. kansasii(MK) and tuberculosis(MTB), but not with the other species. MA(K40004) antiserum reacted with other mycobacteria except few strains of MI and 50~89% of homologous reaction was reduced by heterologous absorption with cells of MI or MS. Intraspecific reaction of MI antisera was natural1y stronger than interspecific reaction and different in extent due to a magnitude of antigenic sharing. Antigenic relationships between N-260D, N-260R, N-260T, and K41014 was somewhat closer than that with N-242D, N-257T, N-28ID, and N-275T. M. nonchromogenicum(MNC) antisera showed a strong interspecific reaction with exception of M. chelonei(MC) and triviale(MTV) to which they reacted weakly or none. Antigenic sharing with M. terrae(MTR) and MG(K30003) was next to intraspecific sharing. NC-3 shared antigens considerably with MA, MC, and M. fortuitum(MF) while NC-11 did not. MTR antisera showed a strong cross-reaction with MI but their homologous reaction was not reduced by MI absorption indicating a paucity of shared antigen of MTR surface. Intraspecific antigenic sharing of course was large with on exception between T-8 and T-13. A considerable amount of antigenic sharing was also found with MNC, MC and MF. Unlike T-8 serum, T-13 antiserum strongly cross-reacted with MA, MG, MK, and MTB. In general, antigenic relationships of mycobacteria, that have been elucidated in this study, well conformed to taxons delineated by the various biological and biochemical means.

  • PDF

Antigenicity of Whey Protein Hydrolysates Against Rabbit Anti ${\alpha}-Lactalbumin$ Antiserum (토끼 항 ${\alpha}-Lactalbumin$ 항혈청에 대한 유청단백질 가수분해물의 항원성)

  • Ha, Woel-Kyu;Juhn, Suk-Lak;Kim, Jung-Wan;Lee, Soo-Won;Lee, Jae-Young;Shon, Dong-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.436-441
    • /
    • 1994
  • To investigate the lowering effects of in vitro enzymatic hydrolysis by the treatment of chymotrypsin, trypsin, pancreatin, or protease from Aspergillus oryzae on the antigenicity of whey protein isolate (WPI) against rabbit anti ${\alpha}-LA$ antiserum, competitive inhibition ELISA (cELISA) and passive cutaneous anaphylaxis (PCA) test using guinea pig were performed. The results of cELISA showed that the monovalent antigenicity of the whey protein hydrolysates (WPH) to the antiserum was decreased to $10^{-2.5}-10^{-5.5}$ and less by the hydrolysis. The monovalent antigenicity of the WPH hydrolyzed by trypsin, or protease from Asp. nryzae was much lowered by the pretreatment of heat denaturation. The antigenicity of the WPH hydrolyzed by chymotrypsin, trypsin, or pancreatin was much lowered by the pretreatment of pepsin. Especially, the antigenicity of TDP (trypic hydrolysate with pretreatment of heat and pepsin) was found almost to be removed. However, there was not consistency between degree of hydrolysis(DH) and the monovalent antigenicity of the WPH. By the heterologous PCA it was found that all of the PGPH lost the polyvalent antigenicity regardless of the pretreatments although WPI and ${\alpha}-LA$ had the positive high antigenicity. The results suggested that the peptides derived from ${\alpha}-LA$ in WPH could bind specific antibodies but they could not induce allergy. Therefore, it was elucidated that the allergenicity of ${\alpha}-LA$ in whey protein could be destroyed easily by the enzymatic hydrolysis.

  • PDF

Sodium Salicylate Activates p38MAPK Though a Specific-Sensing Mechanism, Distinct from Pathways Used by Oxidative Stress, Heat Shock, and Hyperosmotic Stress

  • Kim, Jung-Mo;Oh, Su-Young;Kim, Min-Young;Seo, Myoung-Suk;Kang, Chi-Duk;Park, Hye-Gyeong;Kang, Ho-Sung
    • Biomedical Science Letters
    • /
    • v.9 no.4
    • /
    • pp.241-248
    • /
    • 2003
  • Sodium salicylate, a plant stress hormone that plays an important role(s) in defenses against pathogenic microbial and herbivore attack, has been shown to induce a variety of cell responses such as anti-inflammation, cell cycle arrest and apoptosis in animal cells. p38MAPK plays a critical role(s) in the cell regulation by sodium salicylate. However, the signal pathway for sodium salicylate-induced p38MAPK activation is yet unclear. In this study, we show that although sodium salicylate enhances reactive oxygen species (ROS) production, N-acetyl-L-cysteine, a general ROS scavenger, did not prevent sodium salicylate-induced p38MAPK, indicating ROS-independent activation of p38MAPK by sodium salicylate. Sodium salicylate-activated p38MAPK appeared to be very rapidly down-regulated 2 min after removal of sodium salicylate. Interestingly, sodium salicylate-pretreated cells remained fully responsive to re-induction of p38MAPK activity by a second sodium salicylate stimulation or by other stresses, $H_2O$$_2$ and methyl jasmonate (MeJA), thereby indicating that sodium salicylate does not exhibit both homologous and heterologous desensitization. In contrast, pre-exposure to MeJA, $H_2O$$_2$, heat shock, or hyperosmotic stress reduced the responsiveness to subsequent homologous stimulation. Sodium salicylate was able to activate p38MAPK in cells desensitized by other heterologous p38MAPK activators. These results indicate that there is a sensing mechanism highly specific to sodium salicylate for activation of p38MAPK, distinct trom pathways used by other stressors such as MeJA, $H_2O$$_2$ heat shock, and hyperosmotic stress.

  • PDF

Genenation of structural diversity in polyketides by combinatorial biosynthesis of polyketides: Part I. Generation of multiple bioactive macrolides by hybrid modular polyketide synthases in Streptomyces venezuelae, Part II. Production of novel rifamycins by combinatorial biosynthesis

  • Yoon, Yeo-Joon
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2002.10a
    • /
    • pp.18-25
    • /
    • 2002
  • The pikromycin biosynthetic system in Streptomyces venezuleae is unique for its ability to produce two groups of antibiotics that include the 12-membered ring macrolides methymycin and neomethymycin, and the 14-membered ring macrolides narbomycin and pikromycin. The metabolic pathway also contains two post polyketide-modification enzymes, a glycosyltransferase and P450 hydroxylase that have unusually broad substrate specificities. In order to explore further the substrate flexibility of these enzymes a series of hybrid polyketide synthases were constructed and their metabolic products characterized. The plasmid-based replacement of the multifunctional protein subunits of the pikromycin PKS in S. venezuelae by the corresponding subunits from heterologous modular PKSs resulted in recombinant strains that produce both 12- and 14-membered ring macrolactones with predicted structural alterations. In all cases, novel macrolactones were produced and further modified by the DesVII glycosyltransferase and PikC hydroxylase leading to biologically active macrolide structures. These results demonstrate that hybrid PKSs in S. venezuelae can produce a multiplicity of new macrolactones that are modified further by the highly flexible DesVII glycosyltransferase and PikC hydroxylase tailoring enzymes. This work demonstrates the unique capacity of the S. venezuelae pikromycin pathway to expand the toolbox of combinatorial biosynthesis and to accelerate the creation of novel biologically active natural products. The polyketide backbone of rifamycin B is assembled through successive condensation and ${\beta}$-carbonyl processing of the extender units by the modular rifamycin PKS. The eighth module, in the RifD protein, contains nonfunctional DH domain and functional KR domain, which specify the reduction of the ${\beta}$-carbonyl group resulting in the C-21 bydroxyl of rifamycin B. A four amino acid substitution and one amino acid deletion were introduced in the putative NADPH binding motif in the proposed KR domain encoded by rifD. This strategy of mutation was based on the amino acid sequences of the corresponding motif of the KR domain of module 3 in the RifA protein, which is believed dysfunctional, so as to introduce a minimum alteration and retain the reading frame intact, yet ensure loss of function. The resulting strain produces linear polyketides, from tetraketide to octaketide, which are also produced by a rifD disrupted mutant as a consequence of premature termination of polyketide assembly. Much of the structural diversity within the polyketide superfamily of natural products is due to the ability of PKSs to vary the reduction level of every other alternate carbon atom in the backbone. Thus, the ability to introduce heterologous reductive segments such as ketoreductase (KR), dehydratase (DH), and enoylreductase (ER) into modules that naturally lack these activities would increase the power of the combinatorial biosynthetic toolbox. The dehydratase domain of module 7 of the rifamycin PKS, which is predicted to be nonfunctional in view of the sequence of the apparent active site, was replaced with its functional homolog from module 7 of rapamycin-producing polyketide synthase. The resulting mutant strain behaved like a rifC disrupted mutant, i.e., it accumulated the heptaketide intermediate and its precursors. This result points out a major difficulty we have encountered with all the Amycolatopsis mediterranei strain containing hybrid polyketide synthases: all the engineered strains prepared so far accumulate a plethora of products derived from the polyketide chain assembly intermediates as major products instead of just analogs of rifamycin B or its ansamycin precursors.

  • PDF