DOI QR코드

DOI QR Code

Bombyx mori β-tubulin Promoter for High-level Expression of Heterologous Genes

  • Park, Kwanho (Department of Agricultural Biology, National Academy of Agricultural Science, RDA) ;
  • Goo, Tae-Won (Department of Biochemistry, School of Medicine, Dongguk University)
  • Received : 2019.07.31
  • Accepted : 2019.09.09
  • Published : 2019.09.28

Abstract

We previously isolated 9 clones that show stronger signal compared to Bombyx mori cytoplasmic actin gene (BmA3) by using a dot blot hybridization. In this study, we focused on one clone among these clones which has high amino acid similarity with ${\beta}$-tubulin gene of B. mori. This clone was ubiquitously expressed in all tissues and developmental stage of B. mori. As result of promoter assay using dual luciferase assay system, we found the highest transcription activity region (-750/-1) in the 5'-flanking region of ${\beta}$-tubulin gene, which has about 47 fold more intensive promoter activity than BmA3 promoter. Moreover, the ${\beta}$-tubulin promoter was normally regulated in Bm5, Sf9, and S2 cells. Therefore, we suggest that ${\beta}$-tubulin promoter may be used more powerful and effectively for transgene expression in various insects containing B. mori as a universal promoter.

Keywords

References

  1. Ailor E, Betenbaugh MJ (1999) Modifying secretion and posttranslational processing in insect cells. Curr Opin Biotechnol 10, 142-145. https://doi.org/10.1016/S0958-1669(99)80024-X
  2. Goo TW, Kim SW, Kim SR, Park SW, Kang SW, Lee KG et al. (2010) Utilization of the Bombyx mori hypothetical protein 32 promoter for efficient transgene expression. Int J Indust Entomol 20, 107-114.
  3. Goo TW, Kim SW, Kim YB, Kim SR, Park SW, Kang SW et al. (2011) A powerful ubiquitous activity of Bombyx mori heat shock protein 70 Promoter. Genes & Genomics 33, 635-643 https://doi.org/10.1007/s13258-011-0060-y
  4. Handler AM, McCombs SD, Fraser MJ Jr, Saul SH (1998) The lepidopteran transposon vector, piggyBac, mediates germline transformation in the Mediterranean fruit fly. Proc Natl Acad Sci USA 9513, 7520-7525.
  5. Horn C, Schmid BGM, Pogoda FS, Wimmer EA (2002) Fluorescent transformation markers for insect transgenesis. Insect Biochem Mol Biol 32, 1221-1235. https://doi.org/10.1016/S0965-1748(02)00085-1
  6. Jacobs PP, Callewaert N (2009) N-glycosylation engineering of biopharmaceutical expression systems. Curr Mol Med 9, 774-800. https://doi.org/10.2174/156652409789105552
  7. Kato T, Kajikawa M, Maenaka K, Park EY (2010) Silkworm expression system as a platform technology in life science. Appl Microbiol Biotechnol 85, 459-470. https://doi.org/10.1007/s00253-009-2267-2
  8. Lowe J, Amos LA (1998) Crystal structure of the bacterial cell-division protein FtsZ. Nature 8, 203-206. https://doi.org/10.1038/34472
  9. Mange A, Julien E, Prudhomme JC, Couble P (1997) A strong inhibitory element down-regulates SRE-stimulated transcription of the A3 cytoplasmic actin gene of Bombyx mori. J Mol Biol 265, 266-274. https://doi.org/10.1006/jmbi.1996.0734
  10. Nogales E, Downing KH, Amos LA, Lowe J (1998) Tubulin and FtsZ form a distinct family of GTPases. Nat Struct Biol 5, 451-458. https://doi.org/10.1038/nsb0698-451
  11. Qian Q, You Z, Ye L, Che J, Wang Y, Wang S et al. (2018) High-efficiency production of human serum albumin in the posterior silk glands of transgenic silkworms, Bombyx mori L. PLoS One 13, e0191507. https://doi.org/10.1371/journal.pone.0191507
  12. Royer C, Jalabert A, Da Rocha M. Grenier AM, Mauchamp B, Couble P et al. (2005) Biosynthesis and cocoon export of a recombinant globular protein in transgenic silkworms. Transgenic Res 14, 463-472. https://doi.org/10.1007/s11248-005-4351-4
  13. Summers MD, Smith GE (1987) A methods for baculovirus vector and insect cell culture procedures, Texas Agricultural Experiment Station, Bulletin No. 1555.
  14. Sun SC, Lindstrom I, Boman HG, Faye I, Schmidt O (1990) Hemolin: an insect-immune protein belonging to the immunoglobulin superfamily. Science 250, 1729-1732. https://doi.org/10.1126/science.2270488
  15. Tamura T, Thibert C, Royer C, Kanda T, Abraham E, Kamba M et al. (2000) Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nat Biotechnol 18, 81-84. https://doi.org/10.1038/71978
  16. Thomas JL, Da Rocha M, Besse A, Mauchamp B, Chavancy G (2002) 3xP3-EGFP marker facilitates screening for transgenic silkworm Bombyx mori L. from the embryonic stage onwards. Insect Biochem Mol Biol 32, 247-253. https://doi.org/10.1016/S0965-1748(01)00150-3
  17. Tomita M, Munetsuna H, Sato T, Adachi T, Hino R (2003) Transgenic silkworms produce recombinant human type III procollagen in cocoons. Nat Biotechnol 21, 52-56. https://doi.org/10.1038/nbt771
  18. Tomita M, Hino R, Ogawa S, Iizuka M, Adachi T, Shimizu K et al. (2007) A germline transgenic silkworm that secretes recombinant proteins in the sericin layer of cocoon. Transgenic Res 16, 449-465. https://doi.org/10.1007/s11248-007-9087-x
  19. Tryselius Y, Samakovlis C, Kimbrell DA, Hultmark D (1992) CecC, a cecropin gene expressed during metamorphosis in Drosophila pupae. Eur J Biochem 204, 395-399. https://doi.org/10.1111/j.1432-1033.1992.tb16648.x
  20. Uchino K, Imamura M, Shimizu K, Kanda T, Tamura T (2007) Germ line transformation of the silkworm, Bombyx mori, using the transposable element Minos. Mol. Genet. Genomics 277, 213-220. https://doi.org/10.1007/s00438-006-0176-y
  21. Uhlirova M, Asahina M, Riddiford LM, Jindra M (2002) Heat inducible transgenic expression in the silkmoth Bombyx mori. Dev Genes Evol 212, 145-151. https://doi.org/10.1007/s00427-002-0221-8
  22. Wang F, Wang R, Wang Y, Zhao P, Xia Q (2015) Large-scale production of bioactive recombinant human acidic fibroblast growth factor in transgenic silkworm cocoons. Sci Rep 16, doi: 10.1038/srep16323.
  23. Wurm FM (2003) Human therapeutic proteins from silkworms. Nat. Biotechnol. 21, 34-35. https://doi.org/10.1038/nbt0103-34
  24. Zhao A, Zhao T, Zhang Y, Xia Q, Lu C, Zhou Z et al. (2010) New and highly efficient expression systems for expressing selectively foreign protein in the silk glands of transgenic silkworm. Transgenic Res 19, 29-44. https://doi.org/10.1007/s11248-009-9295-7