• Title/Summary/Keyword: Heterogeneous traffic

Search Result 162, Processing Time 0.023 seconds

A Scheme for Network Selection and Heterogeneous Handover in Hierarchical Wireless Multiple Access Networks with IMS (IMS를 포함한 계층적 무선 멀티 억세스 네트워크에서의 네트워크 선택 및 핸드오버 기법)

  • Moon, Tae-Wook;Kim, Moon;Cho, Sung-Joon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.5
    • /
    • pp.146-153
    • /
    • 2009
  • Recently, the research relative to NGN(Next Generation Network) is progressing in 3GPP(The 3rd Generation Partnership Progect), IETF(Internet Engineering Task Force), and so on. Although user needs frequently mobility which is various service pattern, In accordance with the development of these various applications, IMS(IP Multimedia Subsystem) and hierarchical networks ie, Femtocell/WiBro/3G etc is constructed for more user demands which provide service in anytime, anywhere. It is necessary to optimum network selection criterion which consider to wireless signal quality add to user service profile and service network traffic balance. NGN also needs a method to perform heterogeneous handover and to constraint Ping-pong phenomenon when using existing terminal-based handover decision. This paper proposes scheme for network selection and heterogeneous handover procedure in hierarchical wireless multi-access network based on SIP-MIH(Session Initiation Protocol-Media Independent Handover) with IMS by using user service profile that the considerations are dealing with not only selection and registration of various access network but also easy of developing the terminal.

Small-cell Resource Partitioning Allocation for Machine-Type Communications in 5G HetNets (5G 이기종 네트워크 환경에서 머신타입통신을 위한 스몰셀 자원 분리 할당 방법)

  • Ilhak Ban;Se-Jin Kim
    • Journal of Internet Computing and Services
    • /
    • v.24 no.5
    • /
    • pp.1-7
    • /
    • 2023
  • This paper proposes a small cell resource partitioning allocation method to solve interference to machine type communication devices (MTCD) and improve performance in 5G heterogeneous networks (HetNet) where macro base station (MBS) and many small cell base stations (SBS) are overlaid. In the 5G HetNet, since various types of MTCDs generate data traffic, the load on the MBS increases. Therefore, in order to reduce the MBS load, a cell range expansion (CRE) method is applied in which a bias value is added to the received signal strength from the SBS and MTCDs satisfying the condition is connected to the SBS. More MTCDs connecting to the SBS through the CRE will reduce the load on the MBS, but performance of MTCDs will degrade due to interference, so a method to solve this problem is needed. The proposed small cell resource partitioning allocation method allocates resources with less interference from the MBS to mitigate interference of MTCDs newly added in the SBS with CRE, and improve the overall MTCD performace using separating resources according to the performance of existing MTCDs in the SBS. Through simulation results, the proposed small cell resource partitioning allocation method shows performance improvement of 21% and 126% in MTCDs capacity connected to MBS and SBS respectively, compared to the existing resource allocation methods.

Development of a Vehicle Driving Cycle in a Military Operational Area Based on the Driving Pattern (군 운용 지역에서 차량의 주행 패턴에 따른 주행모드 개발)

  • Choi, Nak-Won;Han, Dong-Sik;Cho, Seung-Wan;Cho, Sung-Lai;Yang, Jin-Saeng;Kim, Kwang-Suk;Chang, Young-June;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.60-67
    • /
    • 2012
  • Most of a driving cycle is used to measure fuel consumption (FC) and emissions for a specified vehicle. A driving cycle was reflected geography and traffic characteristics for each country, also, driving pattern is affected these parameters such as vehicle dynamics, FC and emissions. Therefore, this study is an attempt to develop a driving cycle for military operational area. The proposed methodology the driving cycle using micro-trips extracted from real-world data. The methodology is that the driving cycle is constructed considering important parameters to be affected FC. Therefore, this approach is expected to be a better representation of heterogeneous traffic behavior. The driving cycle for the military operational area is constructed using the proposed methodology and is compared with real-world driving data. The running time and total distance of the final cycle is 1461 s, 13.10 km. The average velocity is 32.25 km/h and average grade is 0.43%. The Fuel economy in the final cycle is 5.93 km/l, as opposed to 6.10 km/l for real-world driving. There were about 3% differences in driving pattern between the final driving cycle and real-world driving.

A Study on Making use of Multiple Interfaces with Mobile Node Simultaneously (이동 단말의 다중 인터페이스 동시 사용에 관한 고찰)

  • You Tae-wan;Lee Seung-yun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.7
    • /
    • pp.1412-1418
    • /
    • 2005
  • Recently, more and more portable terminals probably have multiple interfaces to be connected to different access technologies. Each technology has its specific characteristics in terms of coverage area, bandwidth, reliability, etc. For example, the mobile node is equipped with three heterogeneous interfaces; IEEE 802.1lb MLAM link, CDMA Cellular link, and 802.16 WiMAX link These mobile nodes may be reachable through different links at the same time or use each interface alternately depending on the network environment. As like this, the portable terminal equipped multiple interfaces can have many benefits; it should be connect to Internet through other interface in case of occurring to failure for currently activate interface, and it should share a mount of traffic efficiently per interface etc. This environment is called end node Multihoming. However, current most Internet protocols are designed originally with single interface in mind. So these potocols do not provide methods for supporting simultaneous diffentiated use of multiple access technologies. In this paper, firstly we have to refer technical consideration items to use multiple interfaces based on IPv6 simultaneously. And we should propose extended registration mechanism for multiple addresses being acquired from interfaces to support reliable accessibility and vertical handover.

Development of Impulse Propagation Model between Lanes through Temporal-Spatial Analysis (시공간적 분석을 통한 차로간 충격량 전파모형 개발)

  • Kim, Sang-Gu;Ryu, Ju-Hyeon
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.3
    • /
    • pp.123-137
    • /
    • 2011
  • In general, flow propagation has been explained using the shock wave theory which is expressed as a function of variations in volume and density. However, the theory has certain limitation in portraying heterogeneous flow, e.g., flow propagation between lanes. Motivated by this fact, this study seeks a new measure for analyzing the propagation characteristics of traffic flow at three sections of highway (i.e., merging area, weaving section, and basic section) from temporal and spatial perspectives, and then develops a model for estimating the measure for the flow propagation. The "shock wave speed" which is the measure widely adopted in literature, was first applied to describe the propagation characteristics, but it was hard to find distinct characteristics in the propagation. This finding inspires to develop a new measure named "Impulse Volume". It is shown that the measure better explains the propagation characteristics at the three study sections of highway. In addition, several models are also developed by performing multi-regression analyses to explain the flow propagation between lanes. The models proposed in this paper can be distinguished in three sections and the lane placement.

Performance Analysis of Operation Strategy of Dual Virtual Cell-based System under The Overlay Convergent Networks of Cognitive Networking (인지 네트워킹 기반 중첩 융합 네트워크에서 이중 가상 셀 운영방안의 성능분석)

  • Choi, Yu-Mi;Kim, Jeong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6B
    • /
    • pp.483-488
    • /
    • 2012
  • With the fast growing data traffic, the performance of the convergent overlay network environment under the cognitive networking environment is crucial for the implementation of the efficient network structure. In order to achieve high capacity and reliable link quality in wireless communication of the overlay convergent networks with the cognitive networking based on the advanced capability of the mobile terminal, a Distributed Wireless Communication System (DWCS) can provide the capability of ambient-aware dual cell system's operation. This paper has considered virtual cell: the Dual Virtual Cell (DVC), and also proposes DVC employment strategy based on DWCS network. One is the Active Virtual Cell which exists for user's actual data traffic and the other is the Candidate Virtual Cell which contains a set of candidate antennas to protect user's link quality from performance degradation or interruption. The considered system constructs DVC by using cognitive ability of finding useful virtual signals. Also, for multi-user high-rate data transmission, the DWCS system exploits Space-Time Trellis Codes. The effects of changing environments on the system performance has been investigated thereafter.

User Bandwidth Demand Centric Soft-Association Control in Wi-Fi Networks

  • Sun, Guolin;Adolphe, Sebakara Samuel Rene;Zhang, Hangming;Liu, Guisong;Jiang, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.709-730
    • /
    • 2017
  • To address the challenge of unprecedented growth in mobile data traffic, ultra-dense network deployment is a cost efficient solution to offload the traffic over some small cells. The overlapped coverage areas of small cells create more than one candidate access points for one mobile user. Signal strength based user association in IEEE 802.11 results in a significantly unbalanced load distribution among access points. However, the effective bandwidth demand of each user actually differs vastly due to their different preferences for mobile applications. In this paper, we formulate a set of non-linear integer programming models for joint user association control and user demand guarantee problem. In this model, we are trying to maximize the system capacity and guarantee the effective bandwidth demand for each user by soft-association control with a software defined network controller. With the fact of NP-hard complexity of non-linear integer programming solver, we propose a Kernighan Lin Algorithm based graph-partitioning method for a large-scale network. Finally, we evaluated the performance of the proposed algorithm for the edge users with heterogeneous bandwidth demands and mobility scenarios. Simulation results show that the proposed adaptive soft-association control can achieve a better performance than the other two and improves the individual quality of user experience with a little price on system throughput.

Design and Implementation of SDN-based 6LBR with QoS Mechanism over Heterogeneous WSN and Internet

  • Lee, Tsung-Han;Chang, Lin-Huang;Cheng, Wei-Chung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.1070-1088
    • /
    • 2017
  • Recently, the applications of Internet of Things (IoTs) are growing rapidly. Wireless Sensor Network (WSN) becomes an emerging technology to provide the low power wireless connectivity for IoTs. The IPv6 over low-power wireless personal area networks (6LoWPAN) has been proposed by IETF, which gives each WSN device an IPv6 address to connect with the Internet. The transmission congestion in IoTs could be a problem when a large numbers of sensors are deployed in the field. Therefore, it is important to consider whether the WSN devices have be completely integrated into the Internet with proper quality of service (QoS) requirements. The Software Defined Network (SDN) is a new architecture of network decoupling the data and control planes, and using the logical centralized control to manage the forwarding issues in large-scale networks. In this research, the SDN-based 6LoWPAN Border Router (6LBR) is proposed to integrate the transmission from WSNs to Internet. The proposed SDN-based 6LBR communicating between WSNs and the Internet will bring forward the requirements of end-to-end QoS with bandwidth guarantee. Based on our experimental results, we have observed that the selected 6LoWPAN traffic flows achieve lower packet loss rate in the Internet. Therefore, the 6LoWPAN traffic flows classified by SDN-based 6LBR can be reserved for the required bandwidth in the Internet to meet the QoS requirements.

Simulation model of a multihomed node with WiMAX and WLAN (WiMAX - WLAN 멀티홈드 노드의 시뮬레이션 모델)

  • Zhang, Xiao-Lei;Wang, Ye;Ki, Jang-Geun;Lee, Kyu-Tae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.111-119
    • /
    • 2010
  • With the rapid progress of wireless technologies today, mobile terminals with multiple access interfaces are emerging. In recent years, WLAN (Wireless Local Area Networks) has become the premier choice for many homes and enterprises. WiMAX (Worldwide Interoperability for Microwave Access) has also emerged as the wireless standard that aims to deliver data over long distances. Therefore, it is important to explore efficient integration methods for delivering multimedia data between heterogeneous wireless networks. In this paper, we developed the simulation models and environments for the mobile multihomed node that has both WiMAX and WLAN interfaces and can move around in both networks by using mobile IP. In order to verify the developed models, we designed and constructed several simulation scenarios, e.g. movement in WiMAX/WLAN, group mobility, MANET, and nested MIP under the various traffic environments such as oneway or bothway UDP packets, FTP traffic, and voice with SIP protocol. The simulation results show that the developed models are useful for mobility studies in various integrated wireless networks.

Downlink Radio Resource Allocation Algorithm for Supporting Heterogeneous Traffic Data in OFDM/SDMA-based Cellular System (OFDM/SDMA 기반 셀룰러 시스템에서 다양한 트래픽 데이터를 지원하기 위한 하향링크 자원할당 알고리즘)

  • Heo Joo;Park Sung-Ho;Chang Kyung-Hi;Lee Hee-Soo;Ahn Jae-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3A
    • /
    • pp.254-266
    • /
    • 2006
  • Recently, researches about downlink resource allocation algorithms applying SDMA to enhance the system throughput and cell coverage have begun. Most OFDM/SDMA based resource allocation algorithms have some limitations such that those only concentrate on maximizing the system throughput or can be applied in single cell environment. In this paper, we propose an OFDM/SDMA based downlink resource allocation algorithm which considers high layer QoS parameters suitable for the required data traffic and it also minimizes the system throughput loss and considers inter-cell interference from adjacent cells. so it can be adopted in multi-cell environment. We manifest the performance of the proposed algorithm in Ped A and SCME MIMO Channel Model.