• Title/Summary/Keyword: Heterogeneous droplet

Search Result 14, Processing Time 0.024 seconds

Dynamic Behavior of Heterogeneous Impinging Droplets onto High Temperature Plate (고온평판에 충돌하는 비균일혼합액적의 동적거동 특성)

  • Lee, Choong Hyun;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.13 no.3
    • /
    • pp.20-23
    • /
    • 2015
  • In this experiment, a heterogeneous droplet consisted of de-ionized water and olive oil was made through two 31G injection needles. The injection flow rate was $50{\mu}{\ell}/min$ and the droplet size was 2 mm. The droplet was impinged onto a sapphire plate which was heated up to $300^{\circ}C$ by a heater. Two high speed cameras were used for visualization, and the frame rate was 20,000 fps. A 150W metal halite lamp was used for illumination. The dropping height was fixed to 20 mm and the corresponding Weber number was 10.6 based on water. Due to different boiling points of two liquids, partial boiling features of heterogeneous droplet was observed. At the Leidenfrost condition, micro explosion phenomenon has occurred.

The Effects of Solvents in Reservior Solution on Protein Crystallization Using Vapor Diffusion method (증기확산법에 의한 단백질 결정화에 미치는 Reservicr 용액의 영향)

  • 이정희;정용제
    • Korean Journal of Crystallography
    • /
    • v.5 no.1
    • /
    • pp.33-38
    • /
    • 1994
  • 'Heterogeneous' vapor diffusion experiments were carried out using hen egg white Iysozyme and equine serum albumin as model proteins: droplets were equilibrated against reservoir solutiorls containing an alternative precipitant which is different from results showed that the use of polyethylene glycol as an alternative precipitant instead of NaCl or ammonium sulfate reduces equilibration rate between droplet and reservoir solution. By using the heterogeneous vapor diffusion techniqlue it is possible to control the equilibration rate by adjusting the relative amounts of ionic salts and nonionic yecipitants in reservoir solutions.

  • PDF

Combustion and Microexplosion of AI/Liquid Fuel Slurry Droplets(II)-Theoretical Study- (Al/액체연료 슬러리 액적의 연소와 미세폭발 (II)-이론적 연구-)

  • Jo, Ju-Hyeong;Byeon, Do-Yeong;An, Guk-Yeong;Baek, Seung-Uk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.6
    • /
    • pp.813-822
    • /
    • 1998
  • The microexplosion of a slurry droplet was considered to be caused by the shell formation and the following pressure build-up in the shell which would be promoted by the suppression of evaporation, subsequent superheating and heterogeneous nucleation of liquid carrier. To closely investigate the pressure build-up and the heterogeneous nucleation, a numerical model was introduced by considering the internal temperature distributions with the shell formation, suppression of evaporation and pressure build-up inside. The microexplosion time was estimated by postulating the limit of superheat for heterogeneous nucleation. The simulation yielded a reasonably good agreement with experimental results for Al/n-heptane slurry droplets under various solid loadings.

Thermal History Analysis and Solid Fraction Prediction of Gas-Atomized Alloy Droplets during Spray Forming (분무성형 공정에서 분무액적의 열이력 해석 및 고상분율 예측)

  • 이언식
    • Journal of Powder Materials
    • /
    • v.1 no.1
    • /
    • pp.85-94
    • /
    • 1994
  • In order to predict droplet velocity and temperature profiles and fractional solidification with flight distance during spray forming, the Newtonian heat transfer formulation has been coupled with the classical heterogeneous nucleation and the specific solidification process. It has been demonstrated that the thermal profile of the droplet in flight is significantly affected by process parameters such as droplet size, initial gas velocity, undercooling. As the droplet size and/or the initial gas velocity increase, the onset and completion of solidification are shifted to greater flight distances and the solidification process also extends over a wider range of flight distances. The amounts of solid fractions formed during recoalescence, segregated solidification and eutectic solidification are insensitive to droplet size and initial gas velocity whereas those are strongly affected by the degree of undercooling. There are good linear relations between the undercooling and the corresponding solid fractions generated during recoalesced, segregated and eutectic stages.

  • PDF

Combustion and Microexplosion of Al/Liquid Fuel Slurry Droplets(I)-Ewperimental Study- (Al/액체연료 슬러리 액적의 연소와 (1)-실험적 연구-)

  • Byeon, Do-Yeong;Jo, Ju-Hyeong;An, Guk-Yeong;Baek, Seung-Uk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.12
    • /
    • pp.1576-1585
    • /
    • 1997
  • The microexplosive combustion of a slurry droplet was investigated experimentally. The microexplosion has been approximately considered to be caused by pressure build-up in the shell and to be promoted by heterogeneous nucleation of liquid carrier, which is due to the suppression of evaporation and subsequent superheating of liquid carrier. To closely investigate the pressure build-up and the heterogeneous nucleation, the experiments were conducted in an electric combustor, of which temperature was controllable (400 K-900 K). And the effects of two aligned droplets on the interactive combustion and microexplosion were found in a hot post region of a flat flame burner. Transient internal temperature distributions for slurry droplets were measured. And the shell formation and the microexplosion of suspended A1/JP-8 and Al/n-heptane slurry droplets were examined with various surfactant concentrations (0.5-5 wt%) and solid loadings (10-50 wt.%). The microexplosion time of binary array of droplets was found to be less than that of the isolated droplet due to radiative interaction between droplets.

A New Concept to Transport a Droplet on Horizontal Hydrophilic/Hydrophobic Surfaces (친수성/소수성 수평 표면상에서의 액적이송에 관한 새로운 개념)

  • Myong, Hyon Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.3
    • /
    • pp.263-270
    • /
    • 2014
  • A fluid transport technique is a key issue for the development of microfluidic systems. In this paper, a new concept for transporting a droplet without external power sources is proposed and verified numerically. The proposed device is a heterogeneous surface which has both hydrophilic and hydrophobic horizontal surfaces. The numerical simulation to demonstrate the new concept is conducted by an in-house solution code (PowerCFD) which employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with interface capturing method (CICSAM) in a volume of fluid (VOF) scheme for phase interface capturing. It is found that the proposed concept for droplet transport shows superior performance for droplet transport in microfluidic systems.

Heat Transfer Analysis on the Rapid Solidification Process of Atomized Metal Droplets (분무된 금속액적의 급속응고과정에 관한 열전달 해석)

  • 안종선;박병규;안상호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2404-2412
    • /
    • 1994
  • A mathematical model has been developed for predicting kinematic, thermal, and solidification histories of atomized droplets during flight. Liquid droplet convective cooling, recalescence, equilibrium-state solidification, and solid-phase cooling were taken into account in the analysis of the solidification process. The spherical shell model was adopted where the heterogeneous nucleation is initiated from the whole surface of a droplet. The growth rate of the solid-liquid interface was determined from the theory of crystal growth kinetics with undercooling caused by the rapid solidification. The solid fraction after recalescence was obtained by using the integral method. The thermal responses of atomized droplets to gas velocity, particle size variation, and degree of undercooling were investigated through the parametric studies. It is possible to evaluate the solid fraction of the droplet according to flight distance and time in terms of a dimensionless parameter derived from the overall energy balance of the system. It is also found that the solid fraction at the end of recalescence is not dependent on the droplet size and nozzle exit velocity but on the degree of subcooling.

Unsteady Mass Transfer Around Single Droplet Accompanied by Interfacial Extraction Reaction of Succinic Acid (숙신산 추출반응이 일어나는 단일 액적계에서의 비정상상태 물질 전달)

  • Jeon, Sangjun;Hong, Won Hi
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1021-1026
    • /
    • 2012
  • The transient mass transfer in a single droplet system consisting of 1-octanol (continuous phase)/aqueous succinic acid solution (dispersed phase) was investigated in the presence of chemical reaction, which is acid/anion exchange reaction of succinic acid and tri-n-octylamine (TOA). This succinic acid extraction by TOA can be considered to occur at the interface between organic and aqueous phase, that is, heterogeneous reaction system. The basic properties of the system such as viscosity, density, distribution coefficient, terminal velocity of droplet, and diffusion coefficient were measured experimentally or calculated theoretically, and used for theoretical calculation of characteristic parameters of mass transfer later. The effects of succinic acid concentration on the terminal velocity was negligible in the existence of TOA, although the terminal velocity increases with succinic acid concentration in the absence of TOA. On the contrary, the terminal velocity decreases with TOA concentration. While droplets falls through organic phase, the trajectory of droplets is observed to oscillate around its vertical path. A mass trnasfer cell was prepared to monitor the mass transfer behavior in a single droplet and used to measure the mean concentration of succinic acid inside droplet. The results are expressed with dimensionless parameters. Under 50 g/L succinic acid condition, the system with 0.1 mol/kg TOA showed that the molar flux decreases in proportion to the decrease of concentration gradient, while in the case of 0.5 mol/kg TOA Sh increases rapidly with time indicating the molar flux of succinic acid decreases relatively slowly compared to the decrease in concentration gradient.

Nanotransfer Printing for Large-Scale Integrated Nanopatterns of Various Single-Crystal Organic Materials

  • Baek, Jang-Mi;Park, Gyeong-Seon;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.361.2-361.2
    • /
    • 2016
  • The manufacture of organic electronic circuits requires effective heterogeneous integration of different nanoscale organic materials with uniform morphology and crystallinity in a desired arrangement on a substrate. Herein, we present a new direct printing method, which enables monolithic integration of crystalline nanowire arrays with a diverse range of organic materials. In this method, we use a nanoscale patterned soft mold, which contains an assembly of simple nanoline patterns but, in combination with droplet of various organic inks, can produce a large-scale integration of various nanopatterns with multiple kinds of organic materials. The morphology of organic nanowires can controlled by nanoconfinement in nanoline of mold. And mutual alignment of nanopatterns can be controlled by adjusting the ink droplet size, number of droplets, ink deposition locations.

  • PDF

Development of Cryopreservation Protocols through Droplet-vitrification and its Application to Vegetatively Propagated Crop Germplasm (영양체 유전자원의 작은방울-유리화법에 의한 초저온동결보존 실용화기술개발)

  • Kim, Haeng-Hoon;Yi, Jung-Yoon;No, Na-Young;Cho, Gyu-Taek;Yoon, Mun-Sup;Baek, Hyung-Jin;Kim, Chung-Kon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.12-12
    • /
    • 2010
  • We developed droplet-vitrification protocol, a combination of droplet-freezing and solution-based vitrification, and applied to germplasm collections of garlic, potato, lily as well as cell lines, including hairy roots, somatic embryos. To establish a garlic cryobank, four Korean garlic field collections at Danyang, Suwon, Mokpo and Namhae were cryopreserved last five years. The protocol applied consisted of preculture for 3-4 days at $10^{\circ}C$ on solid MS medium with 0.3M sucrose, loading for 40 min in liquid medium with 35% PVS3, dehydration with PVS3 for 150 min, cooling in $5{\mu}l$ droplets of PVS3 placed on aluminum foil strips by dipping these strips in liquid nitrogen, warming them by plunging the foil strips into pre-heated($40^{\circ}C$) 0.8M sucrose solution for 30s. A total of over 900 accessions of garlic were stored in liquid nitrogen for long-term conservation using unripe inflorescences, cloves or bulbils. Twelve alternative plant vitrification solutions were designed by modifying cryoprotectant concentrations from the original PVS2 and PVS3. The results suggest that PVS2-based vitrification solutions with increased glycerol and sucrose and/or decreased DMSO and EG concentrations can be applied for medium size explants which are tolerant to chemical toxicity and moderately sensitive to osmotic stress. PVS3 and variants can be used widely when samples are heterogeneous, of large size and/or very sensitive to chemical toxicity and tolerant to osmotic stress.

  • PDF