References
- Yang, J. T., Chen, J. C., Huang, K. J. and Yeh, J. A., 2006, "Droplet Manipulation on a Hydrophobic Textured Surface with Roughened Patterns," J. Microelectromechanical Systems, Vol. 15, No. 3, pp. 697-707. https://doi.org/10.1109/JMEMS.2006.876791
- Shen, W., Kim, J. and Kim, C. J., 2002, "Controlling the Adhesive Force for Electrostatic Actuation of Microscale Mecury Drop by Physical Surface Modification," in Proc. IEEE Int. Conf. MEMS, Las Vegas, NV, Jan., pp. 52-55.
- He B. and Lee, J., 2003, "Dynamic Wettability Switching by Surface Roughness Effect," in Proc. IEEE Int. Conf. MEMS, Kyoto, Japan, Jan., pp. 120-123.
- Liao, Q., Qang, H., Zhu, X. and Li, M., 2006, "Liquid Droplet Movement on Horizontal Surface with Gradient Surface Energy," Science in China Series E: Technological Sciences, Vol. 49, No. 6, pp. 733-741. https://doi.org/10.1007/s11431-006-2032-z
- Ito, Y., Heydari, M., Hashimoto, A., Konno, T., Hirasawa, A., Hori, S., Kurita, K. and Nakajima, A., 2007, "The Movement of a Water Droplet on a Gradient Surface Prepared by Photodegradation," Langmuir, Vol. 23, No. 4, pp. 1845-1850. https://doi.org/10.1021/la0624992
- Myong, H. K. and Kim, J. E., 2006, "A Study on an Interface Capturing Method Applicable to Unstructured Meshes for the Analysis of Free Surface Flow" KSCFE J. of Computational Fluids Engineering, Vol. 11, No. 4, pp. 14-19.
- Myong, H. K., 2008, "Comparative Study on High Resolution Schemes in Interface Capturing Method Suitable for Unstructured Meshes" Trans. Korean Soc. Mech. Eng. B, Vol. 32, No. 1, pp. 23-29. https://doi.org/10.3795/KSME-B.2008.32.1.023
- Myong, H. K., 2009, "Numerical Simulation of Multiphase Flows with Material Interface due to Density Difference by Interface Capturing Method" Trans. Korean Soc. Mech. Eng. B, Vol. 33, No. 6, pp. 443-453. https://doi.org/10.3795/KSME-B.2009.33.6.443
- Myong, H. K., 2011, "Numerical Simulation of Surface Tension-Dominant Multiphase Flows with Volume Capturing Method and Unstructured Grid System" Trans. Korean Soc. Mech. Eng. B, Vol. 35, No. 7, pp. 723-733. https://doi.org/10.3795/KSME-B.2011.35.7.723
- Myong, H. K., 2012, "Numerical Study on Multiphase Flows Induced by Wall Adhesion" Trans. Korean Soc. Mech. Eng. B, Vol. 36, No. 7, pp. 721-730. https://doi.org/10.3795/KSME-B.2012.36.7.721
- Myong, H.K. and Kim, J., 2005, "Development of 3D Flow Analysis Code using Unstructured Grid System(1st Report, Numerical Method)," Trans. Korean Soc. Mech. Eng. B, Vol. 29, No. 9, pp. 1049-1056. https://doi.org/10.3795/KSME-B.2005.29.9.1049
- Myong, H. K. and Kim. J., 2006, "Development of a Flow Analysis Code using an Unstructured Grid with the Cell-Centered Method," J. of Mechanical Science and Technology (KSME Int. J.), Vol. 20, No. 12, pp. 2218-2229. https://doi.org/10.1007/BF02916339
- Ubbink, O., 1997, Numerical Prediction of Two Fluid Systems with Sharp Interface, PhD Thesis, University of London.
Cited by
- Droplet Transport Mechanism on Horizontal Hydrophilic/Hydrophobic Surfaces vol.38, pp.6, 2014, https://doi.org/10.3795/KSME-B.2014.38.6.513
- Transport Mechanism of an Initially Spherical Droplet on a Combined Hydrophilic/Hydrophobic Surface vol.39, pp.11, 2015, https://doi.org/10.3795/KSME-B.2015.39.11.871