• 제목/요약/키워드: Heterogeneous catalytic effect

검색결과 22건 처리시간 0.025초

Study on the Catalytic Properties of Copper Oxide Nanoparticles Synthesized by Levitational Gas Condensation (LGC) Method

  • Uhm, Y.R.;Lee, M.K.;Rhee, C.K.
    • 한국자기학회지
    • /
    • 제17권2호
    • /
    • pp.99-102
    • /
    • 2007
  • The Cu oxide nano powders were synthesized by levitational gas condensation (LGC) method and their high heterogeneous catalytic effects of oxidation of 2,3,5-trimethyl-1,4-hydroquinone (TMHQ) and catalase activity were studied. The nano powders consist of mainly $Cu_2O$. The catalytic effect which was clarified by the oxidation of TMHQ and the activity of catalase, was found to depend on the amount of $Cu_2O$ phase and the particle size.

부양가스증발응축법에 의해 제조된 구리산화물 나노분말의 촉매 특성 연구 (Study on the Catalytic Properties of Copper Oxide Nanoparticles Synthesized by Levitational Gas Condensation (LGC) Method)

  • 엄영량;김흥회;오정석;이창규
    • 한국분말재료학회지
    • /
    • 제12권1호
    • /
    • pp.64-69
    • /
    • 2005
  • The copper oxide nano powders were synthesized by levitational gas condensation(LGC) method, and their high heterogeneous catalytic effects of oxidation of 2,3,5-trimethyl-1,4- hydroquinone (TMHQ) and catalase activity were studied. The observation of transmission electron microscopy (TEM) shows that most of these nano powders are uniform in size, with the average particle size of 35 nm. The nano powder consists of mainly $Cu_2O$, but it is aged to CuO phase. The catalytic effect which was clarified by oxidation of TMHQ and catalase depends on the amount of cuprite phase and the particle size.

Support Effect of Catalytic Activity on 3-dimensional Au/Metal Oxide Nanocatalysts Synthesized by Arc Plasma Deposition

  • Jung, Chan Ho;Naik, B.;Kim, Sang Hoon;Park, Jeong Y.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.140.2-140.2
    • /
    • 2013
  • Strong metal-support interaction effect is an important issue in determining the catalytic activity for heterogeneous catalysis. In this work, we report the catalytic activity of $Au/TiO_2$, $Au/Al_2O_3$, and $Au/Al_2O_3-CeO_2$ nanocatalysts under CO oxidation fabricated by arc plasma deposition (APD), which is a facile dry process with no organic materials involved. These catalytic materials were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS) and $N_2$-physisorption. Catalytic activity of the materials has measured by CO oxidation using oxygen, as a model reaction, in a micro-flow reactor at atmospheric pressure. Using APD, the catalyst nanoparticles were well dispersed on metal oxide powder with an average particle size (3~10 nm). As for catalytic reactivity, the result shows $Au/Al_2O_3-CeO_2$ nanocatalyst has the highest catalytic activity among three samples in CO oxidation, and $Au/TiO_2$, and $Au/Al_2O_3$ in sequence. We discuss the effects of structure and metal-oxide interactions of the catalysts on catalytic activity.

  • PDF

하이브리드 촉매 연소기의 연소특성에 관한 수치적 연구 (Numerical Studies on Combustion Characteristics of a Hybrid Catalytic Combustor)

  • 황철홍;정영식;이창언
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.328-334
    • /
    • 2000
  • The hybrid catalytic(catalytic+thermal) combustor of a lean methane-air mixture on platinum catalyst was investigated numerically using a 2-D boundary layer model with detailed homogeneous and heterogeneous chemistries. For the more accurate calculations, the actual surface site density of monolith coated with platinum was decided by the comparison with experimental data. It was found that the homogeneous reactions in the monolith had little effect on the change of temperature profile, methane conversion rate and light off location. However, the radicals such as OH and CO were produced rapidly at exit by homogeneous reactions. Thus the homogeneous reactions were important to predict the productions of CO and NOx exactly. In thermal combustor, the production of $N_2O$ was more dominant than that of NO due to the relative important of the reaction $N_2+O(+M){\to}N_2O(+M)$. Finally the production of CO and NOx by amount of methane addition were studied.

  • PDF

하이브리드 촉매 연소기의 연소특성에 관한 수치적 연구 (Numerical Studies on Combustion Characteristics of a Hybrid Catalytic Combustor)

  • 황철홍;정영식;이창언
    • 대한기계학회논문집B
    • /
    • 제25권4호
    • /
    • pp.583-592
    • /
    • 2001
  • The combustion characteristics of the hybrid catalytic(catalytic+thermal) combustor with a lean methane-air mixture on platinum catalyst were investigated numerically using a 2-D boundary layer model with detailed homogeneous and heterogeneous chemistries. for the more accurate calculations, the actual surface site density of monolith coated with platinum was decided by the comparison with experimental data. It was found that the homogeneous reactions in the monolith had little effect on the change of temperature profile, methane conversion rate and light off location. However, the radicals such as OH and CO were produced rapidly at exit by homogeneous reactions. The effect of operation conditions such as equivalence ratio, temperature, velocity, pressure and diameter of the monolith channel at the entrance were studied. In thermal combustor, the production of N$_2$O was more dominant than that of NO due to the relative importance of the reaction N$_2$+O(+M)→N$_2$O(+M). Finally the productions of CO and NOx by amount of methane addition were studied.

Chiral Mesoporous Silica for Asymmetric Metal-free Catalysis: Enhancement of Chirality thorough Confinement Space by Plug Effect

  • 정은영;임청래;박상언
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.199-199
    • /
    • 2011
  • The addition of a carbanion to ${\yen}{\acute{a}}{\yen}{\hat{a}}$-unsaturated carbonyl compounds is of importance in the C-C bond formation reactions for modern pharmaceuticals and organic synthesis. Recently, heterogeneous asymmetric catalysis became more attractive area of research because of the easy recovery and separation of the catalyst from the reaction system. Most of synthetic methods for heterogeneous catalysts were grafting or immobilization of homogeneous catalyst onto the solid supports. Trans-1,2-Diaminocyclohexane(DACH) and L-proline ligands have been enormously used as chiral ligands in several catalytic transformation under homogenous conditions. Our group prepared l-proline functionalized mesoporous silica was synthesized under acidic condition using a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer template (EO20PO70EO20, Pluronic P-123, BASF). Furthermore, we successfully directly synthesized trans-1,2 diaminocyclohexane functionalized mesoporous silica by using microwave method. The direct functionalization of chiral ligand into the framework of mesoporous materials is expected to be useful for the heterogeneous asymmetric catalysis. So, we adopt the direct synthesis of chiral ligand functionalized mesoporous silica by using thermal and microwave irradiation. Then, chiral ligand functionalized mesoporous silicas were applied to enantioselective asymmetric catalytic reactions.

  • PDF

망간담지촉매를 이용한 오존/촉매 고급산화공정 평가 (Evaluation of Advanced Oxidation Processes by Catalytic Ozonation with Mn-doped GAC)

  • 송승주;오병수;나승진;이응택;강준원
    • 한국물환경학회지
    • /
    • 제20권2호
    • /
    • pp.176-182
    • /
    • 2004
  • The purpose of this study was to investigate the heterogeneous catalytic ozonation of oxalic acid by manganese (Mn) doped-granular activated carbon (GAC). In order to observe the effect of the amount of Mn doped on GAC, catalysts were manufactured by varying the impregnated Mn concentration. In this paper, the following had labeled all sorts kinds of Mn-doped GAC were labeled with suitable names according to the amount (mM) of the concentration of dipping solution: They were each named as 'Mn20', 'Mn50', 'Mn100' and 'Mn200'. These experiments were performed in a batch reactor (0.5 L) and a semi-batch reactor (1 L) and Mn-free GAC was used as a blank catalyst. The ozone decay properties of each manufactured catalyst were firstly investigated to find out the reactivity between the aqueous ozone and the catalysts. Oxalic acid removal by catalytic ozonation was then performed to demonstrate the oxidative efficiencies of each catalyst.

Surface-functionalized Hexagonal Mesoporous Silica Supported 5-(4-Carboxyphenyl)-10,15,20-triphenyl Porphyrin Manganese(III) Chloride and Their Catalytic Activity

  • Zhang, Wei-Jie;Jiang, Ping-Ping;Zhang, Ping-Bo;Zheng, Jia-Wei;Li, Haiyang
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권12호
    • /
    • pp.4015-4022
    • /
    • 2012
  • Manganese(III) 5-(4-carboxyphenyl)-10,15,20-triphenyl porphyrin chloride (Mn(TCPP)Cl) was grafted through amide bond on silica zeolite Y (HY), zeolite beta ($H{\beta}$) and hexagonal mesoporous silica (HMS). XRD, ICP-AES, $N_2$ physisorption, SEM, TEM, FTIR and thermal analysis were employed to analyse these novel heterogeneous materials. These silica supported catalysts were shown to be used for epoxidation and good shape selectivity was observed. The effect of support structure on catalytic performance was also discussed. The catalytic activity remained when the catalysts were recycled five times. The energy changes about epoxidation of alkenes by $NaIO_4$ and $H_2O_2$ were also computationally calculated to explain the different catalytic efficiency.

Revealing Strong Metal Support Interaction during CO Oxidation with Metal Nanoparticle on Reducible Oxide Substrates

  • Park, Dahee;Kim, Sun Mi;Qadir, Kamran;Park, Jeong Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.264-264
    • /
    • 2013
  • Strong metal-support interaction effect is an important issue in determining the catalytic ac-tivity for heterogeneous catalysis. In this study, we investigated the support effect and the role of organic capping layers of two-dimensional Pt nanocatalysts on reducible metal oxide supports under the CO oxidation. Several reducible metal oxide supports including CeO2, Nb2O5, and TiO2 thin films were prepared via sol-gel techniques. The structure, chemical state and optical property were characterized using XRD, XPS, TEM, SEM, and UV-VIS spectrometer. We found that the reducible metal oxide supports have a homogeneous thin thickness and crystalline structure after annealing at high temperature showing the different optical band gap energy. Langmuir-Blodgett technique and arc plasma deposition process were employed to ob-tain Pt nanoparticle arrays with capping and without capping layers, respectively on the oxide support to assess the role of the supports and capping layers on the catalytic activity of Pt catalysts under the CO oxidation. The catalytic performance of CO oxidation over Pt supported on metal oxide thin films under oxidizing reaction conditions (40 Torr CO and 100 Torr O2) was tested. The results show that the catalytic activity significantly depends on the metal oxide support and organic capping layers of Pt nanoparticles, revealing the strong metal-support interaction on these nanocatalysts systems.

  • PDF

미생물 계면활성제에 있어 유기용매중의 효소반응 (Enzyme Reactions in Organic Solvents on the Biosurfactant)

  • 남기대;김상춘;최재효
    • 한국응용과학기술학회지
    • /
    • 제10권1호
    • /
    • pp.9-22
    • /
    • 1993
  • Recent studies on enzyme reactions in organic solvents are revived. The reactions are classified into three categories: heterogeneous, biphasic and homogeneous systems. The following subjects are described and discussed about the heterogeneous system. 1) The maximal expression of enzyme activity in organic solvents in terms of water content, hydration of enzyme, and equilibriun of water between enzyme and substrate solution. 2) Solvent effect on the catalytic power of enzyme. 3) Thermostability and thermoreactivity. 4) Applications of the enzyme reactions to synthetic chemistry.