DOI QR코드

DOI QR Code

Surface-functionalized Hexagonal Mesoporous Silica Supported 5-(4-Carboxyphenyl)-10,15,20-triphenyl Porphyrin Manganese(III) Chloride and Their Catalytic Activity

  • Zhang, Wei-Jie (The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University) ;
  • Jiang, Ping-Ping (The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University) ;
  • Zhang, Ping-Bo (The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University) ;
  • Zheng, Jia-Wei (The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University) ;
  • Li, Haiyang (The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University)
  • Received : 2012.07.17
  • Accepted : 2012.09.12
  • Published : 2012.12.20

Abstract

Manganese(III) 5-(4-carboxyphenyl)-10,15,20-triphenyl porphyrin chloride (Mn(TCPP)Cl) was grafted through amide bond on silica zeolite Y (HY), zeolite beta ($H{\beta}$) and hexagonal mesoporous silica (HMS). XRD, ICP-AES, $N_2$ physisorption, SEM, TEM, FTIR and thermal analysis were employed to analyse these novel heterogeneous materials. These silica supported catalysts were shown to be used for epoxidation and good shape selectivity was observed. The effect of support structure on catalytic performance was also discussed. The catalytic activity remained when the catalysts were recycled five times. The energy changes about epoxidation of alkenes by $NaIO_4$ and $H_2O_2$ were also computationally calculated to explain the different catalytic efficiency.

Keywords

References

  1. Biermann, U.; Friedt, W.; Lang, S. Angew. Chem. Int. Ed. 2000, 39, 2206. https://doi.org/10.1002/1521-3773(20000703)39:13<2206::AID-ANIE2206>3.0.CO;2-P
  2. Kumar, D.; Ali, A. Energy Fuels 2012, 26, 2953. https://doi.org/10.1021/ef300127c
  3. Ye, X.; Jiang, P. P.; Zhang, P. B.; Dong, Y. M. Catal. Lett. 2010, 137, 88. https://doi.org/10.1007/s10562-010-0334-z
  4. Cho, S. H.; Walther, N. D.; Nguyen, S. T.; Hupp, J. T. Chem. Commun. 2005, 5331.
  5. Huang, G.; Luo, Z. C.; Xiang, F.; Cao, X.; Guo, Y. A.; Jiang, Y. X. J. Mol. Catal. A: Chem. 2011, 340, 60. https://doi.org/10.1016/j.molcata.2011.03.010
  6. Figueira, F.; Cavaleiro, J. A. S.; Tome, J. P. C. J. Porphyr. Phthalocya. 2011, 15, 517. https://doi.org/10.1142/S1088424611003653
  7. Holland, B. T.; Walkup, C.; Stein, A. J. Phys. Chem. B 1998, 102, 4301.
  8. Costa, A. A.; Ghesti, G. F.; Macedo, J. L.; Braga, V. S.; Santos, M. M.; Dia, J. A.; Dias, S. C. L. J. Mol. Catal. A: Chem. 2008, 282, 149. https://doi.org/10.1016/j.molcata.2007.12.024
  9. Silva, M.; Azenha, M. E.; Pereira, M. M.; Burrows, H. D.; Sarakha, M.; Forano, C.; Ribeiro, M. F.; Fernandes, A. Appl. Catal. B: Environ. 2010, 100, 1. https://doi.org/10.1016/j.apcatb.2010.07.033
  10. Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.; Mohammadpoor- Baltork, I.; Moosavifar, M. J. Mol. Catal. A: Chem. 2009, 302, 68. https://doi.org/10.1016/j.molcata.2008.11.036
  11. Gao, B. J.; Wang, R. X.; Zhang, Y. J. Appl. Polym. Sci. 2009, 112, 2764. https://doi.org/10.1002/app.29837
  12. Brien, P. J. O. Chem. Biol. Interact. 2000, 129, 113. https://doi.org/10.1016/S0009-2797(00)00201-5
  13. Kellner, D. G.; Hung, S. C.; Weiss, K. E.; Sligar, S. G. J. Biol. Chem. 2002, 277, 9641. https://doi.org/10.1074/jbc.C100745200
  14. Yoshioka, S.; Tosha, T.; Takahashi, S.; Ishimori, K.; Hori, H.; Morishima, I. J. Am. Chem. Soc. 2002, 124, 14571. https://doi.org/10.1021/ja0265409
  15. Ferreira, A. D. Q.; Vinhado, F. S.; Iamamoto, Y. J. Mol. Catal. A: Chem. 2006, 243, 111. https://doi.org/10.1016/j.molcata.2005.07.039
  16. Serwicka, E. M.; Po towicz, J.; Bahranowski, K.; Olejniczak, Z.; Jones, W. Appl. Catal. A: Gen. 2004, 275, 9. https://doi.org/10.1016/j.apcata.2004.07.005
  17. Vinhado, F. S.; Prado-Manso, C. M. C.; Sacco, H. C.; Iamamoto, Y. J. Mol. Catal. A: Chem. 2001, 174, 279. https://doi.org/10.1016/S1381-1169(01)00200-X
  18. Iamamoto, Y.; Ciuffi, K. J.; Sacco, H. C.; Prado, C. M. C.; Moraes, M.; Nascimento, O. R. J. Mol. Catal. 1994, 88, 1676.
  19. Saikia, L.; Srinivas, D. Cata. Today 2009, 141, 66. https://doi.org/10.1016/j.cattod.2008.03.014
  20. Moreira, M. S. M.; Martins, P. R.; Curi, R. B.; Nascimento, O. R.; Iamamoto, Y. J. Mol. Catal. A: Chem. 2005, 233, 73. https://doi.org/10.1016/j.molcata.2005.01.045
  21. Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.; Kargar, H.; Komeili-Isfahani, H. Catal. Commun. 2005, 6, 688. https://doi.org/10.1016/j.catcom.2005.06.012
  22. Adler, A. D.; Longo, F. R.; Kampas, F. J. Inorg. Nucl. Chem. 1970, 32, 2443. https://doi.org/10.1016/0022-1902(70)80535-8
  23. Tanev, P. T.; Pinnavaia, T. J. Sci. 1995, 267, 865. https://doi.org/10.1126/science.267.5199.865
  24. Jiang, P. P.; Chen, M.; Dong, Y. M.; Lu, Y.; Ye, X.; Zhang, W. J. J. Am. Oil. Chem. Soc. 2010, 87, 83. https://doi.org/10.1007/s11746-009-1469-1
  25. Miyake, Y.; Yokomizo, K.; Matsuzaki, N. J. Am. Oil. Chem. Soc. 1998, 75, 15. https://doi.org/10.1007/s11746-998-0003-1
  26. Gunstone, F. D. J. Am. Oil. Chem. Soc. 1993, 70, 1139. https://doi.org/10.1007/BF02632156
  27. Zhuang, Y.; Cao, G.; Ge, C. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2012, 85, 139. https://doi.org/10.1016/j.saa.2011.09.047
  28. Tabatabaeian, K.; Mamaghani, M.; Mahmoodi, N. O.; Khorshidi, A. Catal. Commun. 2008, 9, 416. https://doi.org/10.1016/j.catcom.2007.07.024
  29. Kim, S.; Chung, J.; Kim, B. M. Tetrahedron Lett. 2011, 52, 1363. https://doi.org/10.1016/j.tetlet.2011.01.065
  30. Moghadam, M.; Tangestaninejad, S.; Habibi, M. H.; Mirkhani, V. J. Mol. Catal. A: Chem. 2004, 217, 9. https://doi.org/10.1016/j.molcata.2004.03.001
  31. Bhattacharjee, S.; Anderson, J. A. J. Mol. Catal. A: Chem. 2006, 249, 103. https://doi.org/10.1016/j.molcata.2005.12.042
  32. Du, G. D.; Tekin, A.; Hammond, E. G.; Woo, L. K. J. Am. Oil Chem. Soc. 2004, 81, 477. https://doi.org/10.1007/s11746-004-0926-3
  33. Wang, J.; Xu, L.; Zhang, K.; Peng, H.; Wu, H.; Jiang, J.; Liu, Y.; Wu, P. J. Catal. 2012, 288, 16. https://doi.org/10.1016/j.jcat.2011.12.023
  34. Cheneviere, Y.; Chieux, F.; Caps, V.; Tuel, A. J. Catal. 2010, 269, 161. https://doi.org/10.1016/j.jcat.2009.11.003
  35. Zhao, Z.; Liu, Y.; Wu, H.; Li, X.; He, M.; Wu, P. J. Porous Mater. 2010, 17, 399. https://doi.org/10.1007/s10934-009-9316-1
  36. Luan, Z. H.; Fournier, J. A.; Wooten, J. B.; Miser, D. E. Micropor. Mesopor. Mater. 2005, 83, 150. https://doi.org/10.1016/j.micromeso.2005.04.006
  37. Joseph, T.; Kumar, K. V.; Ramaswamy, A. V.; Halligudi, S. B. Catal. Commun. 2007, 8, 629. https://doi.org/10.1016/j.catcom.2006.03.004

Cited by

  1. Inorganic helping organic: recent advances in catalytic heterogeneous oxidations by immobilised tetrapyrrolic macrocycles in micro and mesoporous supports vol.3, pp.45, 2013, https://doi.org/10.1039/c3ra44038a
  2. Facile Modification of Surface of Silica Particles with Organosilanepolyol and Their Characterization vol.34, pp.12, 2012, https://doi.org/10.5012/bkcs.2013.34.12.3805
  3. Manganese(III) Tetraphenylporphyrin Encapsulated by Ion-Modified Hexagonal Mesoporous Silica With Unexpected Enhanced Epoxidation Selectivity vol.46, pp.12, 2012, https://doi.org/10.1080/15533174.2015.1137059