• 제목/요약/키워드: Heterocoagulation

검색결과 9건 처리시간 0.021초

Fabrication of Multi-Layered Graphenes/P(S-co-BA) Nanocomposite via Sudden Heating Heterocoagulation Process

  • Choi, JinKyu;Lee, Eun-Kyoung;Shim, Sang Eun
    • Elastomers and Composites
    • /
    • 제52권4호
    • /
    • pp.272-279
    • /
    • 2017
  • The heterocoagulation of latex is a simple and useful method to fabricate various polymer nanocomposites in which a precise control of the colloid stability is essential. In this work, a multi-layered graphenes (MLGs)/poly(styrene-co-butyl acrylate) (P(S-co-BA)) nanocomposite having an excellent dispersion of MLGs was prepared via the sudden heating heterocoagulation process. The P(S-co-BA) component was obtained by emulsion polymerization. This process can effectively shorten the process and particles growth steps. The colloid stability of these dispersions was controlled by factors such as ionic charge, temperature, and reaction times. The influence of these factors on heterocoagulation was evaluated and the properties of the nanocomposites were investigated. The conductivity of the MLGs/P(S-co-BA) nanocomposites increased from -11.53 to -5.70 S/cm for an increase in MLG content from 0.01 to 5 wt%. Moreover, percolation threshold was observed in the case of 0.01 wt% MLGs.

Heterocoagulation으로 제조된 PBA/PS/Si 블렌드의 압력가소성 (Baroplastic Process of PBA/PS/Si Blend Prepared by Heterocoagulation)

  • 이광희;류상욱
    • 폴리머
    • /
    • 제36권6호
    • /
    • pp.727-732
    • /
    • 2012
  • 양이온성 및 음이온성 계면활성제로 합성된 poly(butyl acrylate)(PBA), polystyrene(PS) 에멀젼을 다양한 농도로 혼합하여 높은 수율의 압력가소성 고분자 블렌드로 제조하였다. 이들 입자간의 heterocoagulation은 각 에멀젼의 농도에 크게 의존하였지만, 일정한 비율의 음이온과 양이온 사이에서만 진행되었고, 사용된 고분자의 양에 상관없이, 거의 균일한 조성의 블렌드가 얻어졌다. 비슷한 방법을 이용하여 음이온성 PBA와 양이온성 PS 나노입자에 음이온성 실리카 나노입자를 정전기적으로 첨가함으로써 정량적인 PBA/PS/Si 블렌드를 제조하였다. PBA/PS/Si 블렌드는 $25^{\circ}C$, 13.8MPa, 10분의 조건에서 압축성형으로 가공되었으며, 2 혹은 5 wt%의 실리카가 첨가된 시편의 경우, 반투명의 필름형상으로 성형되어 3.0 MPa의 인장강도와 25MPa의 탄성계수를 얻을 수 있었다.

Heterocoagulation 법으로 제조된 이차전지용 MWNT/SnO2 나노복합음극재의 전기화학적 특성 (Preparation and Characteristics of MWNT/SnO2 Nanocomposites Anode by Colloidal Heterocoagulation for Li-ion Battery)

  • 한원규;홍석준;황길호;좌용호;오승탁;조진기;강성군
    • 한국재료학회지
    • /
    • 제18권9호
    • /
    • pp.457-462
    • /
    • 2008
  • Through the electrostatic interaction between the poly-diallydimethylammonium chloride (PDDA) modified Multi-walled carbon nanotube (MWNT) and $SnO_2$ suspension in 1mM $NaNo_3$ solution, MWNT-$SnO_2$ nanocomposites (MSC) for anode electrodes of a Li-ion battery were successfully fabricated by colloidal heterocoagulation method. TEM observation showed that most of the $SnO_2$ nanoparticles were uniformly deposited on the outside surface of the MWNT. Galvanostatic charge/discharge cycling tests showed that MSC anodes exhibited higher specific capacities than bare MWNT and better cyclability than unsupported nano-$SnO_2$ anodes. Also, after 20 cycles, the MSC anode fabricated by heterocoagulation method showed more stable cycle properties than the simply mixed MSC anode. These improved electrochemical properties are attributed to the MWNT, which adsorbs the mechanical stress induced from volume change and increasing electrical conductivity of the MSC anode, and suppresses the aggregation between the $SnO_2$ nanoparticles.

알콕사이드 가수분해법에 의핸 제조된 TiO$_2$ 분말을 이용한 Micad의 표면 개질 (Surface Modification of Mica Using TiO$_2$ prepared by Alkoxide Hydrolysis Method)

  • 한상필;윤영훈;이상훈;최성철
    • 한국세라믹학회지
    • /
    • 제36권7호
    • /
    • pp.691-697
    • /
    • 1999
  • TiO2 powder was adsorbed on the surface of mica using the heterocoagulation method in water TiO2 powder was prepared from hydrolysis of titanium-iso propoxide in a mixed solvent of anhydrous ethanol and water. When the molar ratio of water to titanium iso-propoxide was 0.25 monodispersed spherical TiO2 particles were obtained. The prepared TiO2 powder showed anatase phase after heat treatment at 50$0^{\circ}C$ for 2 h and then transformed to rutile phase after heat treatment at 100$0^{\circ}C$ for 2h. The iso-electric points of TiO2 and Mica were pH 3.9 and pH 3.25 respectively which were measured by the Z-potential analysis in water base. The maximum Z-potential difference between two powders was observed in the range of pH 3.6~3.7 TiO2 powder was adsorbed on the surface of mica by heterocoagulation method in pH 3.6~3,7 The properties of prepared TiO2 powder was haracterized by TG-DTA, XRD and SEM The morphology and thermal properties of TiO2-adsorbed mica were examined.

  • PDF

Preparation of zirconia coated graphite powders

  • Kim, J.H.;Lee, K.G.;Lee, S.K.
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1997년도 Proceedings of the 12th KACG Technical Meeting and the 4th Korea-Japan EMGS (Electronic Materials Growth Symposium)
    • /
    • pp.45-48
    • /
    • 1997
  • ZrO$_2$ coated flake graphite powders were prepared by the controlled hydrolysis of zirconium oxichloride. The stirring process plays an important role in the coating process. There are two types of coated ZrO$_2$ particles: (a)primary particles with few nm size were obtained by the direct formation of the shell by precipitation of the surface of the graphite and (b) Secondary particles of ZrO$_2$ with ∼0.1$\mu\textrm{m}$ size were obtained by the independent formation of primary particles ZrO$_2$ and subsequent heterocoagulation at the graphites surface.

  • PDF

고형오구 입자크기가 고형오구의 세척성에 미치는 영향 (The Effect of Particle Size on the Detergency of Particulate Soil)

  • 문미화;강인숙
    • 한국의류학회지
    • /
    • 제34권4호
    • /
    • pp.653-662
    • /
    • 2010
  • This study investigates the effect of particle size on the detergency of particulate soil using an $\alpha-Fe_2O_3$ particle as the model. Monodispersed spherical $\alpha-Fe_2O_3$ particles were prepared by the hydrothermal aging of an acidic $FeCl_3$ and HCl solution. The $\xi$-potential of PET fiber was measured by the streaming potential method. The potential energy of interaction between the particle and fiber was calculated using the heterocoagulation theory for a sphere-plate model. The $\xi$-potential of PET fiber and potential energy of interaction between particles and fiber increased with a decreasing particle size in a DBS solution. However, in the nonionic surfactant solution, the $\xi$-potential signs of PET fiber and $\alpha-Fe_2O_3$ particles were (-) and (+), respectively; there was no repulsive power between the particles and substrate. The adhesion of particles to the fabric increased with increasing particle size in the anionic surfactant solution and their removal from the fabric increased with a decreasing particle size. The adhesion of particles to the fabric and their removal from the fabric was biphasic with a maximum and minimum at 0.1% concentration of the surfactant solution. In the nonionic surfactant solution the adhesion of particles to fabric and their removal from the fabric were greater than the ones in the anionic surfactant DBS solution.

세제용액 중에서 Zeolite A의 세정성능에 관한 연구 (A Study on the Detergency Performance of Zeolite A in the Detergent Solution)

  • 강윤석;김현창;남기대
    • 공업화학
    • /
    • 제8권4호
    • /
    • pp.624-630
    • /
    • 1997
  • 세탁세제 빌더로 사용되는 제올라이트 A는 수용액 내에서 다가 이온의 이온교환 작용을 발휘하여 세정효과를 높여주고 물에 불용성인 물질로서 수용액 내에서 콜로이드 입자로 존재하므로 그 세정효과를 콜로이드의 분산안정화 이론을 이용하여 정량적으로 측정할 수 있다. 본 연구에서는 제올라이트 A의 입자오염에 대한 세정성능을 상호작용의 포텐셜 에너지 관점에서 평가하고자 각각의 무기염 용액 내에서 카본블랙, 셀룰로오스 및 제올라이트 A의 제타 포텐셜을 측정하고, 헤테로 응집이론에 적용하였다. 제올라이트 A는 탄산나트륨 용액 내에서 섬유 입자와의 정전기적 반발력을 상대적으로 크게 하여 세정효과를 높여주며, 황산나트륨 용액 내에서는 카본블랙과 급속응집을 일으켜 카본블랙이 섬유에 재 부착되는 정도를 낮추어주는 역할을 하는 것으로 판단된다.

  • PDF

Polyester직물에의 Hematite입자의 부착과 제거에 관한 계면전기적 고찰(제1보) -기질과 입자간의 상호작용에너지- (Interfacial Electrical Studies on Adhesion of Hematite Particle to Polyester Fabric and its Removal from the Fabric(Part I) -The interaction energy between particle and fabric-)

  • 강인숙;김성련
    • 한국의류학회지
    • /
    • 제17권3호
    • /
    • pp.380-390
    • /
    • 1993
  • Effect of interfacial electrical conditions on adhesion of ${\alpha}-Fe_2O_3$ particles to PET fabric and the removal of ${\alpha}-Fe_2O_3$ particles from PET fabric, were investigated as functions of pH, electrolyte and ionic strength. The ${\zeta}$ potential of PET fiber and ${\alpha}-Fe_2O_3$ particles in the electrolyte solution were measured by streaming potential and microelectrophoresis methods respectively. The potential energy of interaction between ${\alpha}-Fe_2O_3$ particles and PET fabric were calculated by using the heterocoagulation theory for a sphere-plate model. The negative ${\zeta}$ potential of ${\alpha}-Fe_2O_3$ particle and PET fiber increased with pH, and then decreased certain pH and isoelectric points of ${\alpha}-Fe_2O_3$ particles and PET fiber were pH 6.5 and pH 3.5, respectively. The negative ${\zeta}$ potential of ${\alpha}-Fe_2O_3$ particle and PET fiber affected by electrolytes, were relatively high with polyanion electrolytes in solutions and were low with neutral salts. However, at surfactant solution, ${\zeta}$ potential was levelled off. The influence of the ionic strength on the ${\zeta}$ potential of ${\alpha}-Fe_2O_3$ particle was small but the negative ${\zeta}$ potential of PET fiber increased with the ionic strength. In the presence of anionic surfactant, the ${\zeta}$ potential of ${\alpha}-Fe_2O_3$ particle and PET fiber increased regardless of solution conditions. The interaction energy between ${\alpha}-Fe_2O_3$ particle and PET fabric increased with pH. The interaction energy was relatively high with polyanion electrolytes in solution, and the influence of ionic strength on the interaction energy was small, and the effective thickness of electrical double layer increased with decreasing the ionic strength.

  • PDF

Polyester 직물에의 Hematite 입자의 부착과 제거에 관한 계면 전기적고찰 (제2보) (Interfacial Electrical Studios on Adhesion of Hematite Particles to Polyester Fabric and their Removal from the Fabric(Part 2))

  • 강인숙;김성련
    • 한국의류학회지
    • /
    • 제19권5호
    • /
    • pp.765-773
    • /
    • 1995
  • Effect of interfacial electrical conditions such as, the f potential of PET fiber and u-Fe203 particles, the stability parameter and potential energy of interaction on adhesion of a-Fe903 particles to PET fabric and their removal from the fabric, were investigated as functions of pH, electrolyte and ionic strength. The stability parameter, potential energy of interaction between a-Fe2O3 particles and PET fabric were calculated by using the heterocoagulation theory for a sphere-plate model The adhesion of a-Fe2O3 particles to PET fabric and their removal from PET fabric were carried out by using water bath shaker and Terg-O-Tometer under various solution conditions. The adhesion of a-Fe2O3 particles to the PET fabric and the removal of a-Fe2O3 particles from the PET fabric were biphasic and were maximum and minimum at pH 7~8, respectively. With high pH and polyanion electrolytes in solution, the adhesion of a-Fe2O3 particles to the PET fabric was low but effects of electrolytes on the removal of a-Fe2O3 particles from the PET fabric was small. The adhesion of a-Fe2O3 particles to the PET fabric and the removal of a-Fe2O3 Particles from the PET fabric were biphasic, and were lowest and highest at the ionic strength 1$\times$10-3, respectively. The adhesion of a-Fe2O3 particles to PET fabric was well related with the interfacial electrical conditions; it was negatively correlated with the f potentials of a-Fe2O3 Particles of its absolute value, the stability parameter and the maximum of total potential energy, while, the adhesion was not related with the t potentials of PET fiber itself. Therefore, the primary factor determining the adhesion of a-Fe203 particles to PET fabric may be the stability of dispersed particles caused by the electrical repulsion of particles. The removal of a-Fe203 particles from PET fabric was not related to such interfacial electrical conditions as the t potentials of PET fiber, the stability parameter and the maximum of total potential energy but removal was related to t potential of a-Fe203 particles.

  • PDF