• Title/Summary/Keyword: Hertzian 접촉

Search Result 113, Processing Time 0.034 seconds

Conditions for Assuming Hertzian Stress for the Contact between a Circular Pin and Hole (원형 핀과 구멍의 접촉에서 헤르츠 응력장 가정을 위한 조건)

  • Kim, Hyung-Kyu
    • Tribology and Lubricants
    • /
    • v.31 no.5
    • /
    • pp.189-194
    • /
    • 2015
  • This paper focuses on the conformal contact problem. A typical example of conformal contact is the contact between a pin and hole. In particular, this paper focuses on the condition for assuming a contact stress field to be a Hertzian pressure profile by using well-known classical solutions associated with Hertzian contact. Persson first developed the conformal contact analysis method around half a century ago, but there have been no significant improvements since then. The present research also adopted this method, but developed new solutions from the viewpoint of application to structural design. The analysis began with a comparison between Persson°Øs conformal contact stress and the Hertzian stress fields. The next step was to check the differences in the normalized stress values of both. This study used the tolerance for the difference in the peak stresses of Persson°Øs solution and the Hertz solution to validate the Hertzian assumption. This gave the range for the difference in radii of the pin and hole when the contact force and mechanical properties of the material are specified. The results showed that, at a tolerance of 5%, the Hertzian assumption is valid if half of the contact angle is less than 35°ý. In addition, the Hertzian assumption holds even for a relatively long contact length, in contrast to the general incomplete contact problem. This paper discusses these results along with other aspects of the application to the design.

Analysis and Design of the Rotary Ultrasonic Motor using the Hertzian Contact Model (Hertzian Contact Model을 이용한 회전형 초음파 모터의 해석 및 설계)

  • Rho, Jong-Seok;Lee, Kyung-Pyo;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.886-887
    • /
    • 2007
  • 현재까지 많은 연구자들이 초음파 모터의 회전자와 고정자 사이의 접촉 메커니즘을 규명하고 이를 통해 초음파 모터의 특성을 해석하고자 하였다. 하지만 초음파 모터의 비선형적이고 복잡한 접촉 메커니즘으로 인해 접촉 메커니즘의 명확한 규명과 이를 통한 정확하고 완전한 모터의 특성 해석이 불가능한 상황이다. 따라서 본 논문에서는 현재까지 제안된 접촉 메커니즘을 고려한 초음파 모터 해석 방법 중 Hertzian Contact Model을 이용하는 Flynn에 의해 제안된 방법을 유한 요소법과 결합하여 초음파 모터의 특성을 해석하는 기법을 제시하고자 한다.

  • PDF

Impact Analysis of a plate structures Employing Hertzian Contact Theory (Hertz 접촉 이론을 이용한 평판 구조물의 충돌 해석)

  • Lim, Hong-Seok;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.383-388
    • /
    • 2008
  • A modeling method for the impact analysis of plate structures employing Hertzian contact theory is presented in this paper. Since local deformation as well as bending deflection of the plate occurs due to the collision, it has to be considered for the impact analysis. When the coefficient of restitution is employed for the impact analysis, the local deformation is not considered. For more accurate and reliable impact analysis, however, the local deformation should be considered. The effects of the location of collision and the collision mass on the impact duration time and the contact force magnitude are investigated through numerical studies employing Hertzian contact theory.

  • PDF

Mode I and Mode II Stress Intensity Factors for a Surface Cracked in TiN/Steel Under Hertzian Rolling Contact (Hertzian 접촉하중시 TiN/Steel의 표면균열에 대한 모드 I과 모드 II 응력확대계수)

  • Kim, Byeong-Su;Kim, Wi-Dae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1163-1172
    • /
    • 2001
  • The two dimensional problem of a layered tribological system(TiN/Steel) containing a vertical surface breaking crack and subject to rolling contact is considered in this study. Using finite elements and stress extrapolation method, a series of preliminary models are developed. Preliminary results indicate that the extrapolation technique is valid to determine Modes I and II stress intensity factors for cracks. In the case of TiN/Steel medium, KI and KII were determined for variations in crack length, layer thickness, and load location. The results show that KII reaches maximum values when the contact is adjacent to the crack where Mode I stresses are compressive. KII values decrease with decreased crack length and significantly decrease for reduced layer thickness.

Study on an efficient modeling for the impact analysis of a flexible body employing Hertzian contact theory (Hertz 접촉이론을 이용한 탄성체의 충돌 해석을 위한 효율적 모델링에 관한 연구)

  • Lim, Hong-Seok;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.838-843
    • /
    • 2008
  • Since thickness deformation and lateral deflection often occurs during the collision of flexible bodies, they should be considered simultaneously in the impact analysis. The thickness deformation, however, cannot be considered in beam/shell theory since the thickness is assumed to be constant in the theory. So, solid elements are employed to estimate the thickness deformation. However, the CPU time increases significantly if solid elements are employed. In the present study, a modeling method for the impact analysis of a flexible body employing Hertzian contact theory is presented. The efficiency and the accuracy of the modeling method are discussed with some numerical examples.

  • PDF

Finite Element Analysis of Pivot Stiffness for Tilting Pad Bearings and Comparison to Hertzian Contact Model Calculations (유한 요소 해석을 통해 계산된 틸팅 패드 베어링의 피봇 강성과 Hertzian 접촉 모델 해석 결과 비교)

  • Lee, Tae Won;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.30 no.4
    • /
    • pp.205-211
    • /
    • 2014
  • Recent studies emphasize the importance of pivot stiffness in the analysis of tilting pad bearings (TPBs). The present paper develops a finite element model of the pad pivot and compares the predicted pivot stiffness to the results of Hertzian contact model calculations. Specifically, a finite element analysis generates tetrahedral mesh models with ~40,000 nodes for a ball-socket pivot and ~50,000 nodes for a rocker-back pivot. These models assume a frictionless boundary condition in the contact area. Increasing the applied loads on the pad in conjunction with increasing time steps ensures rapid convergence during the nonlinear numerical analysis. Predictions are performed using the developed finite element model for increasing the differential diameters between the pad pivot (or ball) and the bearing housing (or socket). The predictions show that the pivot contact area increases with decreasing differential diameters and increasing applied loads. Further, the maximum deformation occurring at the pivot center increases with increasing differential diameters and increasing applied loads. The pivot stiffness increases nonlinearly with decreasing differential diameters and increasing applied loads. Comparisons of results of the developed finite element model to those of Hertzian contact model calculations assuming a small contact area show that the latter model underestimates the pivot stiffnesses predicted by the finite element models of the ball-socket and rocker-back pivots, particularly for small differential diameters. This result implies the need for cautionduring the design of pivot stiffness by the Hertzian contact model.

Nonlinear Dynamic Analysis of Vehicle-Bridge Interaction considering the Hertzian Contact Spring and Rail Irregularities (헤르쯔 접촉스프링과 레일 요철을 고려한 차량-교량 동적상호작용 비선형 해석)

  • Kang, Young-Jong;Neuyen, Van-Ban;Kim, Jung-Hun;Kang, Yoon-Suk
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1478-1485
    • /
    • 2010
  • In this paper, the nonlinear dynamic response of Vehicle-Bridge interaction with the coupled equations of motion including nonlinear Hertzian contact is presented. The moving train model is chosen to have 10 degrees of freedom (DOF). The bridge is modeled as 2D Euler-Bernoulli beam element with 4 DOF for each element, two for rotations and another two for translations. The nonlinear Hertzian contact is used to simulate the interaction between vehicle and bridge. Base on the relationship of wheel displacement of the vehicle and the vertical displacement of the bridge in Hertzian contact, the coupled equations of motion of the whole system is derived. The convenient formulation was encoded into a computer program. The contact forces, contact area and stress of the rail surface were also computed. The accuracy and efficiency of the proposed program are verified and compared with exact analytical solution and other previous studies. Various numerical examples and parametric studies have demonstrated the versatility and applicability of the proposed program.

  • PDF

Propagation Behavior of Inclined Surface Crack of Semi-Infinite Elastic Body under Hertzian Contact (반무한 탄성체의 헤르츠 접촉하의 경사진 표면균열의 전파거동)

  • 김재호;김석삼;박중한
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.624-635
    • /
    • 1990
  • Analytical study based on linear fracture mechanics was conducted on propagation behavior of inclined surface crack in semi-infinite elastic body. The analytical model was assumed to be inclined surface crack under plane strain condition upon which Hertzian stress was superimposed. Supposing continuous distribution of dislocation and applying Erdogan-Gupta's method to this crack problem, the stress intensity factors $K_{I}$ and $K_{II}$) at the crack-tip were obtained for various Hertzian contact positions. Analytic results have shown that driving force for crack growth is $K_{I}$ for non-lubricated condition and $K_{II}$ for fluid and boundary lubricated condition. The coefficient of friction at the hertzian contact and crack surfaces plays an important role in predicting the direction of crack propagation. It is also found that the maximum effective stress intensity factor exists at cracks of a certain specific length depending on lubricated condition.ion.n.

Multibody Elastic Contact Analysis by Modified Linear Programming (수정된 선형계획법을 이용한 다물체 탄성 접촉 문제 해석)

  • 이대희;전범준;최동훈;임장근;윤갑영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 1989
  • A general and efficient algorithm is proposed for the analyses of multibody elastic contact problems. It is presumed that there exists negligible friction between the bodies. It utilizes a simplex type algorithm with a modified entry rule and incoporates finite element method to obtain flexibility matrices for arbitrarily shaped bodies. The multibody contact problem of a vehicle support on an elastic foundation is considered first to show the effictiveness of the suggested algorithm. Its solution is compared favorably with the existing solution. A contact problem among inner race, rollers and outer race is analyzed and the distribution of load, rigid body movements and contact pressure distributions are obtained. The trend of contact characteristics is compared with that of the idealized Hertzian solutions for two separate two-body contact problems. The numerical results obtained by directly treating a multibody contact are believed to be more exact than the Hertzian solution for the idealized two separate two-body contact problems.

Study on Scoring of Hypoid Gear Set in Bus with Retarder (리타더 장착 버스 하이포이드 기어의 스코링에 관한 연구)

  • Yang, J.H.;Kim, Y.J.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.102-109
    • /
    • 2009
  • A retarder, as a supplementary brake system that is not friction-based, is frequently used in heavy-duty vehicles generally to slow the vehicles down on inclines. The electric retarder mainly used in a heavy-duty bus is generally placed between the transmission and the axle. The rotor inside the retarder system is attached to the axle. The operation of the retarder within a driven vehicle generates reverse torque due to coast driving force on hypoid gears in the differential gear system. By the reverse torque, scoring or scuffing on the hypoid gear teeth may directly occur. The scoring may be generated due to excessive contact stresses on the tooth surface. In this study, tooth contact stresses and contact patterns were analysed in order to investigate on the tooth scoring phenomenon using a finite element analysis program T900 in which the Hertzian contact stress formula was taken. Backlash, wear and surface finish were considered in the finite element simulation on the scoring.

  • PDF