• Title/Summary/Keyword: Hertzian

Search Result 192, Processing Time 0.027 seconds

Effect if Grain Size on Plasticity of Ti$_3$SiC$_2$ (Ti$_3$SiC$_2$의 소성 변형 특성에 미치는 결정립 크기의 효과)

  • 이승건
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.8
    • /
    • pp.807-812
    • /
    • 1998
  • Mechanical properties of two types of polycrystlline {{{{ { { Ti}_{3 }SiC }_{2 } }} with different grain size were investigated. A fine grain {{{{ { { Ti}_{3 }SiC }_{2 } }} has a higher fracture strength and hardness. Plot of strength versus Vickers indentation load indicated that {{{{ { { Ti}_{3 }SiC }_{2 } }} has a high flaw tolerance. Hertzian indentation test using a spherical indenter was used to study elastic and plastic behavior in {{{{ { { Ti}_{3 }SiC }_{2 } }}. Indentation stress-strain curves of each material are made to evaluate the plasticity of {{{{ { { Ti}_{3 }SiC }_{2 } }} Both find and coarse grain {{{{ { { Ti}_{3 }SiC }_{2 } }} showed high plasticity. In-dentation stress-strain curve of coarse grain {{{{ { { Ti}_{3 }SiC }_{2 } }} deviated even more from an ideal elastic limit in-dicating exceptional plasticity in this material. Deformation zones were formed below the contact as well as around the contact area in both materials but the size of deformation zone in coarse grain {{{{ { { Ti}_{3 }SiC }_{2 } }} was much larger than that in fine grain {{{{ { { Ti}_{3 }SiC }_{2 } }} Intragrain slip and kink would account for high plasticity. Plastic behavior of {{{{ { { Ti}_{3 }SiC }_{2 } }} was strongly influenced by grain size.

  • PDF

Stress Analysis at the Contact Boundary between the Work Roll and the Back-up Roll for a SmartCrown Roll Profile Shape (SmartCrown Roll Profile 형상에 따른 Work Roll과 Back-up Roll 접촉경계면의 응력해석)

  • Song, S.H.;Kim, S.R.;Kim, K.W.
    • Transactions of Materials Processing
    • /
    • v.24 no.3
    • /
    • pp.212-217
    • /
    • 2015
  • SmartCrown is a system to control the plate crown by shifting the sine-shaped work rolls in the axial direction. The control range of the plate crown depends on a depth of sine-shaped roll profile because the roll radius varies continuously along the axial direction. When the roll profile is changed to improve the control range, the contact stress between the work roll and the back-up roll also changes. In the current study, the contact stress for various profiles and rolling conditions were analyzed using the finite element method and compared with results from Hertzian contact theory. A submodel method is used to increase the accuracy of the finite element analysis. The analysis results showed that the maximum increase in the contact stress was only 53MPa, so it is anticipated that no back-up roll spalling will occur.

Modelling the multi-physics of wind-blown sand impacts on high-speed train

  • Zhang, Yani;Jiang, Chen;Zhan, Xuhe
    • Wind and Structures
    • /
    • v.32 no.5
    • /
    • pp.487-499
    • /
    • 2021
  • The wind-blown sand effect on the high-speed train is investigated. Unsteady RANS equation and the SST k-ω turbulent model coupled with the discrete phase model (DPM) are utilized to simulate the two-phase of air-sand. Sand impact force is calculated based on the Hertzian impact theory. The different cases, including various wind velocity, train speed, sand particle diameter, were simulated. The train's flow field characteristics and the sand impact force were analyzed. The results show that the sand environment makes the pressure increase under different wind velocity and train speed situations. Sand impact force increases with the increasing train speed and sand particle diameter under the same particle mass flow rate. The train aerodynamic force connected with sand impact force when the train running in the wind-sand environment were compared with the aerodynamic force when the train running in the pure wind environment. The results show that the head car longitudinal force increase with wind speed increasing. When the crosswind speed is larger than 35m/s, the effect of the wind- sand environment on the train increases obviously. The longitudinal force of head car increases 23% and lateral force of tail increases 12% comparing to the pure wind environment. The sand concentration in air is the most important factor which influences the sand impact force on the train.

Characteristics of Pressure Distribution of Journal Bearing according to Lining Material (라이닝 재료에 따른 저널 베어링의 압력 분포 특성)

  • Shin, Sang-Hoon;Rim, Chae Whan;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.480-485
    • /
    • 2017
  • The main reason for the heat induced accidents occurring at the after stern tube journal bearing is the excessive local pressure caused by the deflection of the propulsion shaft due to the propeller loads. It is expected that the contact area could beenlarged and the local pressure reduced accordingly by using a lining material having alow Young's modulus instead of the existing white metal. The purpose of this work is to investigate the characteristics of the pressure distribution and determine the allowable pressure value in the case where bearing products made of materials having a low Young's modulus are used. In this study, the propeller loads, heat effect, and hull deflection are considered in the evaluation of the local pressure of the ship propulsion shaft. Also, the Hertzian contact condition was applied. From the analysis results in the case where a lining material with a low Young's modulus was used, it was found that a robust design could be achieved and the local pressure could be reduced effectively independent of the load conditions. It will be possible to producenew products made of materials having a low Young's modulus if the manufacturer confirms the performance specifications drawn by this study.

A Study on Flexibility Acquisition Method for VLCC Shaft System (VLCC 축계 시스템의 유연성 확보 방안에 관한 연구)

  • Shin, Sang-Hoon;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.135-139
    • /
    • 2017
  • The main reason for heat accidents occurring at the after stern tube bearing (STB) is excessive local pressure caused by the deflection of the propulsion shaft due to propeller loads. The probability of a heat accident is increased by the low flexibility of the shaft system in very large crude oil carriers (VLCCs) as the engine power and shaft diameter increase and the distance decreases between the forward and after STBs. This study proposed shaft system with only an after STB and no forward STB for a flexibility acquisition method for a VLCC shaft system under hull deformation. A Hertzian contact condition was applied, which assumes a half-elliptical pressure distribution along the contact width for the calculation of the local squeeze pressure. The propeller loads, heat effect, and hull deflection under engine operating conditions are also considered. The results show that the required design criteria were satisfied by building a partial slope at the white metal, which is the material at the axial contact side in the after STB. This system could reduce building cost by simplification of the shaft system.

A Simplified Estimation of Stress Intensity Factor on the Hertzian Contact (혜르츠접촉하에서 응력확대계수의 간단한 계산법)

  • Jin, Song-Bo;Kim, Seock-Sam
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.30-37
    • /
    • 1999
  • 헤르츠 접촉하에 있는 반무한체에서의 표면균열을 살펴보았다. 시편의 응력확대계수 K를 구하기 위해 사용되는 간단화된 방법을 이 논문에 쓰여진 모델에 적용시켰다. 기존에 알려진 결과에 비해 상당히 만족스런 결과를 얻었으며 다른 방법보다 이 방법이 훨씬 더 편리함이 입증되었다.

  • PDF

A Study on the Surface Temperature Rise in Spur Gear Part I - Flash Temperature (Spur Gear의 표면온도상승에 관한 연구 Part I - Flash Temperature)

  • 김희진;문석만;김태완;구영필;조용주
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.251-257
    • /
    • 2000
  • A numerical simulation of the temperature rise for sliding surface in dry contact is based on Jaeger's formula combined with a calculated heat input. A gear tooth temperature analysis was performed. The pressure distribution has the Hertzian pressure distribution on the heat source. The heat partition factor is calculated along line of action. A Temperature distribution of tooth surface is calculated about before and after profile modification. A Temperature of addendum and deddendum in modified gear have reduced.

  • PDF

The Study for Estimation of the Surface Temperature Rise in Spur Gear Tooth (Spur Gear 치면의 표면상승온도 예측에 관한 연구)

  • 김희진;구영필;조용주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.331-337
    • /
    • 2001
  • A numerical simulation of the temperature rise for sliding surface in dry contact is based on Jaegers formula combined with a calculated heat input. A gear tooth temperature analysis was performed. The pressure distribution has the Hertzian pressure distribution on the heat source. The heat partition factor is calculated along ling of action. A Temperature distribution of tooth surface is calculated about before and after profile modification. A Temperature of addendum and deddendum in modified gear have reduced.

  • PDF

Experimental Characterization and Modeling for Electromagnetic Interference (EMI) Estimation due to PDP System (PDP 시스템의 EMI 예측을 위한 회로 모델링 및 실험적 검증)

  • 강종구;어영선;심종인;정주영
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.173-176
    • /
    • 2001
  • A new EMI estimation technique concerned with a PDP system is presented. A physical circuit model is developed which can fairly well describe the AC-PDP system. Then EMIs are determined by exploiting Hertzian dipole antenna model. The simulation results are experimentally verified with the test panel. The AC PDP system was measured in the frequency range of 30MHz ~ 300MHz in a semi-anechoic chamber, according to CISPR 13 code. Thereby, it is shown that the proposed technique can be usefully employed for EMI reduction.

  • PDF

Modeling and Applications for Contact Response of Fingerpad (손끝 접촉반응의 모델링과 응용)

  • 한은경;권영하;강재식;이수민;강대임;박연규
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1998.11a
    • /
    • pp.261-266
    • /
    • 1998
  • 손끝으로 물건을 문지르거나 잡아 질감을 느끼는 경우 나타나는 현상을 Hertzian 접촉이론을 응용하여 수학적인 모델링을 하였다. 물체표면에 손끝이 접촉하여 눌려지게되면 변형이 일어나게 되고 변형된 모양과 정도에 따라 촉감을 느끼게 .된다. 손끝은 점탄성체로서 누르는 변위에 따라 탄성계수와 점성계수 값이 비선형으로 변하게 되는 현상을 이론과 실험을 통하여 연구하였다. 특히 손끝이 직물을 누를 때 나타나는 현상을 측정하여 질감표현과의 관계를 분석하였다.

  • PDF