• 제목/요약/키워드: Hertzian

검색결과 192건 처리시간 0.026초

마이크로 압입시험기법의 응용을 통한 탄성체 고분자 소재의 역학적 특성화 및 계면 접합에너지 평가기법 연구 (Characterization of Elastic Modulus and Work of Adhesion in Elastomeric Polymer through Micro Instrumented Indentation Technique)

  • 이규제;강승균;강인근;권동일
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1744-1748
    • /
    • 2007
  • In this study, the Johnson-Kendall-Roberts (JKR) theory was combined with the instrumented indentation technique (IIT) to evaluate work of adhesion and modulus of elastomeric polymer. Indentation test was used to obtain the load-displacement data for contacts between Tungsten Carbide indenter and elastomeric polymer. And the JKR contact model, contrived to take viscoelastic effects of polymer into account, was applied to compensate the contact area and the elastic modulus which Hertzian contact model would underestimate and overestimate, respectively. Besides, we could obtain the thermodynamic work of adhesion by considering the surface energy in this contact model. In order to define the relation between JKR contact area and applied load without optical measuring of contact area, we used the relation between applied load and contact stiffness by examining the correlation between JKR contact area and stiffness through dimensional analysis with 14 kinds of elastomeric polymer. From this work, it could be demonstrated that the interfacial work of adhesion and elastic modulus of compliant polymer can be obtained from a simple instrumented indentation testing without area measurement, and provided as the main algorithm of compliant polymer characterization.

  • PDF

MD 시뮬레이션을 이용한 실린더 형태 나노와이어의 접촉면적에 관한 연구 (Determination of Contact Area of Cylindrical Nanowire using MD Simulation)

  • 김현준
    • Tribology and Lubricants
    • /
    • 제32권1호
    • /
    • pp.9-17
    • /
    • 2016
  • Contact between solid surfaces is one of the most important factors that influence dynamic behavior in micro/nanoscale. Although numerous theories and experimental results on contact behavior have been proposed, a thorough investigation for nanomaterials is still not available owing to technical difficulties. Therefore, molecular dynamics simulation was performed to investigate the contact behavior of nanomaterials, and the application of conventional contact theories to nanoscale was assessed in this work. Particularly, the contact characteristics of cylindrical nanowires were examined via simulation and contact theories. For theoretical analysis, various contact models were utilized and work of adhesion, Hamaker constant and elastic modulus those are required for calculation of the models were obtained from both indentation simulation and tensile simulation. The contact area of the cylindrical nanowire was assessed directly through molecular dynamics simulation and compared with the results obtained from the theories. Determination of the contact area of the nanowires was carried out via simulation by counting each atom, which is within the equilibrium length. The results of the simulation and theoretical calculations were compared, and it was estimated that the discrepancy in the results calculated between the simulation and the theories was less than 10 except in the case of the smallest nanowires. As the result, it was revealed that contact models can be effectively utilized to assess the contact area of nanomaterials.

파이로 충격 모사 시험 장치 주요 매개변수에 따른 SRS 분석 (The Parametric Study of the Design Variables on the SRS of Pyroshock Resonant Bar)

  • 전현규;김문국;김민성;권영민;유예진;김인걸
    • 한국군사과학기술학회지
    • /
    • 제21권4호
    • /
    • pp.413-421
    • /
    • 2018
  • The pyroshocks can cause failure of electronics devices and structures. Metal-metal impact methods are utilized to simulate mechanical pyroshock, and to adjust the knee frquency of the SRS(Shock Response Spectrum) through resonant structures. In this paper, the major parameters of pyroshock simulation device which affect the SRS were examined. Through the Hertzian contact law and the modal characteristics of the resonant bar, it was found that the SRS is affected by the length and mass of a bar and various impact conditions such as velocity and mass of impactor. The characteristics due to the geometric parameters of a resonant bar was analyzed by performing FEA and also the resonant bar was designed and fabricated. Through the pyroshock simulation test, the characteristics of SRS due to the variation of impact parameters were examined.

乾性摩찰音 에 관한 硏究 (A Study on Dry Friction-Induced Sound)

  • 김재호;김석삼
    • 대한기계학회논문집
    • /
    • 제8권6호
    • /
    • pp.591-598
    • /
    • 1984
  • 본 논문에서는 고체상호간 미끄름접촉에 의해 발생하는 진동과 소음의 특성을 조사하기 위해서 실험과 이론해석을 행하였다. 미끄름접촉과 관련된 소음에는 brake squeal 혹은 wheel screech등과 같이 stick-slip 형태의 동적 불안정 상태와 관련이 있는 squeal noise와, 겉보기로 동적 안정 상태에 있으나 미끄름접촉면간에 내재하는 미끄름접촉 고유의 불규칙한 동특성에 기인하여 발생하는 rubbing noise가 있다. 본 연구의 대상은 보다 기본적인 형태인 후자에 한한다.

마이크로 압입시험기법의 응용을 통한 탄성체 고분자 소재의 역학적 특성화 및 계면 접합에너지 평가기법 연구 (Mechanical Characterization of Elastomeric Polymer Through Micro Instrumented Indentation Technique)

  • 이규제;강승균;강인근;권동일
    • 대한기계학회논문집A
    • /
    • 제31권9호
    • /
    • pp.951-959
    • /
    • 2007
  • In this study, the Johnson-Kendall-Roberts(JKR) theory was combined with the instrumented indentation technique (IIT) to evaluate work of adhesion and modulus of elastomeric polymer. Indentation test was used to obtain the load-displacement data for contacts between Tungsten Carbide indenter and elastomeric polymer. And the JKR contact model, contrived to take viscoelastic effects of polymer into account, was applied to compensate the contact area and the elastic modulus which Hertzian contact model would underestimate and overestimate, respectively. Besides, we could obtain the thermodynamic work of adhesion by considering the surface energy in this contact model. In order to define the relation between JKR contact area and applied load without optical measuring of contact area, we used the relation between applied load and contact stiffness by examining the correlation between JKR contact area and stiffness through dimensional analysis with 14 kinds of elastomeric polymer. From this work, it could be demonstrated that the interfacial work of adhesion and elastic modulus of compliant polymer can be obtained from a simple instrumented indentation testing without area measurement, and provided as the main algorithm of compliant polymer characterization.

취성재료의 펀칭가공을 위한 충격 장치 개발 및 펀칭기구 해석 (Development of Experimental Setup for Impact Punching in Brittle Materials and Analysis of Punching Mechanism)

  • 신형섭;김진한;오상엽
    • 대한기계학회논문집A
    • /
    • 제25권4호
    • /
    • pp.629-636
    • /
    • 2001
  • In order to investigate the possibility of impact punching in brittle materials, an experimental setup was developed. In the setup, a long bar as a punch was used to apply the impact load to the specimen plate and measure the applied impact force during the impact punching process. Impact punching tests with various shape of punches were performed in soda-lime glass and silicon wafer under a different level of contact pressure. The damage appearance after the impact punching was examined according to the applied contact pressure. The minimum contact pressure required for a complete punching in glass specimens without development of radial cracks around the punched hole was sought at each condition. The minimum contact pressure increased with increasing the thickness of specimens and decreasing the end radius of punches. The profile of impact forces was measured during the impact punching experiment, and it could explain well the behavior of the punching process in brittle material plates. The measured impact force increased with increasing the contact pressure applied to the plates.

볼스크류 너트부의 강성 모델링과 불확도 해석 (Modeling and Uncertainty Analysis of Ballscrew Nut Stiffness)

  • 민복기;조뢰;김경호;박천홍;정성종
    • 한국정밀공학회지
    • /
    • 제32권5호
    • /
    • pp.415-422
    • /
    • 2015
  • Ballscrews are important motion transfer and positioning units of industrial machinery and precision machines. Positioning accuracy of the feed drive system depends upon axial stiffness of ballscrew systems. As the nut stiffness depends upon preload and operating conditions, analytical modeling of the stiffness is performed through the contact and body deformation analysis. For accurate contact analysis, the contact angle variation between balls and grooves is incorporated in the developed model. To verify the developed mathematical stiffness model, experiments are conducted on the test-rig. Through the uncertainty analysis according to GUM (Guide to the expression of Uncertainty in Measurement), it is confirmed that the formulated stiffness model has over 85% estimation accuracy. After constructing the ballscrew DB, a quick turnaround system for the nut stiffness estimation has been developed in this research.

초음파원자현미경을 이용한 나노스케일 박막 코팅층에 대한 탄성특성 평가 (Evaluation of Elastic Properties for Nanoscale Coating Layers Using Ultrasonic Atomic Force Microscopy)

  • 곽동열;조승범;박익근
    • 한국생산제조학회지
    • /
    • 제24권5호
    • /
    • pp.475-480
    • /
    • 2015
  • Ultrasonic atomic force microscopy (Ultrasonic-AFM) has been used to investigate the elastic property of the ultra-thin coating layer in a thin-film system. The modified Hertzian theory was applied to predict the contact resonance frequency through accurate theoretical analysis of the dynamic characteristics of the cantilever. We coat 200 nm thick Aluminum and Titanium thin films on the substrate using the DC Magnetron sputtering method. The amplitude and phase of the contact resonance frequency of a vibrating cantilever varies in response to the local stiffness constant. Ultrasonic-AFM images were obtained using the variations in the elastic property of the materials. The morphology of the surface was clearly observed in the Ultrasonic-AFM images, but was barely visible in the topography. This research demonstrates that Ultrasonic-AFM is a promising technique for visualizing the distribution of local stiffness in the nano-scale thin coatings.

간섭성 반스톡스 라만 산란 현미경 후방 신호지 방사패턴에 관한 이론계산 연구 (Theoretical Calculation on Radiation Patterns of Epi-signal in CARS Microscopy)

  • 유용심;조혁
    • 한국광학회지
    • /
    • 제18권4호
    • /
    • pp.286-291
    • /
    • 2007
  • 높은 수치구경의 대물렌즈를 사용하는 간섭성 반스톡스 라만 산란 현미경(coherent anti-Stokes Raman scattering microscopy)에서 폴리스틸렌구에서 발생한 신호의 먼거리장 방사패턴에 대한 이론적 계산 연구를 수행하였다. 극초점 조건에서 입사 레이저 광의 전기장 분포를 계산하였고, CARS 신호 생성원인인 비선형 분극(헤르치안 쌍극자) 방사의 간섭성 합을 통하여 먼거리장 방사 패턴을 계산하였다. 폴리스틸렌구의 크기에 따른 후방 방사패턴을 계산하였고, 1100 nm 직경을 가진 폴리스틸렌구와 폴리스틸렌 구껍질의 방사패턴을 비교하였다. 또한, 극초점으로부터 폴리스틸렌구의 중심이 이동함에 따른 방사패턴의 변화를 보였다.

Oil Film Thickness Measurement of Engine Bearing and Cam/tappet Contact in an Automotive Engine

  • Choi, Jae-Kwon;Min, Byung-Soon;Han, Dong-Chul
    • Tribology and Lubricants
    • /
    • 제11권5호
    • /
    • pp.71-77
    • /
    • 1995
  • The capacitance technique was used to measure the minimum oil film thickness in engine bearing and the central oil film thickness between cam and tappet. This method is based on the measurement of total capacitance of oil film. For the measurement of the oil film thickness between cam and tappet, two surfaces were assumed to be flat and parallel within the Hertzian region and all the measured capacitance originated from this region. Shear rates from the measured minimum oil film thickness are over 10$^{6}$ sec$^{-1}$ in the greater part in both two cases. The minimum oil film thickness in engine bearing is larger than the surface roughness. Between cam and tappet it is mostly smaller than the surface roughness. In spite of the awkward restriction of the reliability of measured oil film thickness, it was known that the capacitance technique makes it possible to measure the oil film thickness in elastohydrodynamic and mixed lubrication regimes as well as in hydrodynamic regime. Therefore, it is also possible to classify the lubrication regimes based on the oil film thickness.