• Title/Summary/Keyword: Hertz 접촉이론

Search Result 23, Processing Time 0.029 seconds

A Study on the Vibration and Acoustic Radiation from an Elastic Free- Free Beam due to a Steel Ball Impact (강구의 충돌에 의한 양단자유 보의 진동 및 음향 방사에 관한 연구)

  • 박홍철;이효근;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1615-1626
    • /
    • 1992
  • In this study, vibrations and resulting acoustic radiations from an elastic beam impacted by a steel ball were studied theoretically and experimentally. First the transverse vibrations of free-free elastic beams are analysed with modal analysis technique. The impact forces are modeled with the Hertz's theory and the contanct duration is compared with the measured values. Also the calculated beam vibrations are verified with the experimental results. Then the acoustic radiations due to the beam vibration are studied numberically and experimentally. The acousticpressure is calculated assuming the beam has an elliptical cross-section. The predicted acoustic pressure is compared with the measured value. It was found that both the predicted beamvibrations using the Hertz's theory and the estimated acoustic pressure under the assumption of an elliptical cross- section are in very good agreements with the measured values.

Torsional Stiffness Analysis of a Cycloid Reducer using Hertz Contact Theory (Hertz 접촉이론을 이용한 사이클로이드 감속기의 비틀림 강성해석)

  • Lee S.Y.;Park J.S;Ahn H.J.;Han D.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.816-821
    • /
    • 2005
  • The cycloid reducer has very high efficiency, high ratios, high stiffness and small size, in comparison with a conventional gear mechanism, which makes it an attractive candidate for limited space and precision application such as industrial robot. There are several publications on analysis and design of the cycloid reducer, however, it was assumed that the contact stiffness of pin rollers and cycloid disk is constant regardless of their contact geometry. Moreover, the torsional stiffness of the cycloid reducer couldn't be calculated due to the assumption. In this paper, we present a new procedure of calculating torsional stiffness of the cycloid reducer using Hertz contact theory. First, conventional force analysis of the cycloid reducer is briefly reviewed. Then, iterative numerical calculation procedure of the contact stiffness is proposed based on the Hertz contact theory where the contact stiffness depends on the contact force. In addition, total torsional stiffness of the cycloid reducer is estimated considering its rolling element bearing stiffness. The torsional stiffness of the cycloid reducer is dominated by the rolling element bearing stiffness since the contact stiffness of the cycloid disk is too large.

  • PDF

Study on an efficient modeling for the impact analysis of a flexible body employing Hertzian contact theory (Hertz 접촉이론을 이용한 탄성체의 충돌 해석을 위한 효율적 모델링에 관한 연구)

  • Lim, Hong-Seok;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.838-843
    • /
    • 2008
  • Since thickness deformation and lateral deflection often occurs during the collision of flexible bodies, they should be considered simultaneously in the impact analysis. The thickness deformation, however, cannot be considered in beam/shell theory since the thickness is assumed to be constant in the theory. So, solid elements are employed to estimate the thickness deformation. However, the CPU time increases significantly if solid elements are employed. In the present study, a modeling method for the impact analysis of a flexible body employing Hertzian contact theory is presented. The efficiency and the accuracy of the modeling method are discussed with some numerical examples.

  • PDF

Impact Force Roconstruction and Impact Model Identification Using Inverse Dynamics of an Impacted Beam (역동역학을 이용한 충격을 받는 보의 충격력 복원 및 충격모델의 변수 파악)

  • 박형순;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.623-630
    • /
    • 1995
  • The impulse response functions (force-strain relations) for Euler-Bernoulli and Timoshenko beams are considered. The response of a beam to a transverse impact force is numerically obtained with the convolution approach using the impulse response function obtained by Laplace transform. Using this relation, the impact force history is determined in the time domain and results are compared with those from Hertz's contact law. The parameters of timpact force model are identified using the recovered force and compared with the Hertz's contact model. In order to verify the proposed algorithm, measurements were done using an impact hammer and a steel ball drop test and these results are also compared with the simulated values.

Impact Analysis of a plate structures Employing Hertzian Contact Theory (Hertz 접촉 이론을 이용한 평판 구조물의 충돌 해석)

  • Lim, Hong-Seok;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.383-388
    • /
    • 2008
  • A modeling method for the impact analysis of plate structures employing Hertzian contact theory is presented in this paper. Since local deformation as well as bending deflection of the plate occurs due to the collision, it has to be considered for the impact analysis. When the coefficient of restitution is employed for the impact analysis, the local deformation is not considered. For more accurate and reliable impact analysis, however, the local deformation should be considered. The effects of the location of collision and the collision mass on the impact duration time and the contact force magnitude are investigated through numerical studies employing Hertzian contact theory.

  • PDF

A Study on Rolling Contact Behaviors of a Flat Rough Surface with a Smooth Ball (구와 평면간의 구름접촉거동에 관한 연구)

  • 김경모;정인성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.554-570
    • /
    • 1990
  • he rolling contact behaviors between a smooth ball and a flat rough surface under dynamic load are intricately affected by many factors, such as the diameter of a ball, normal load and the roughness of a flat surface etc. Accordingly, the experimental study is done to find them on the base of elastic hysteresis loss as theoretical approach is very difficult. The experimental apparatus composed of damped-free vibration system is used. This paper investigates the damping characteristics on the rolling contact area through rolling friction force and logarithmic decrement versus displacement obtained in accordance with the variations of those factors, and presents a new experimental method to find out contact width using the relations of logarithmic decrement and rolling friction force with displacement.

Contact Characteristic and Stress Analysis of Wheel-Rail for Rolling Stock (철도차량용 휠과 레일의 접촉특성 및 응력 해석)

  • Sung, Ki-Deug;Yang, Won-Ho;Cho, Myoung-Rae;Kim, Cheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.148-156
    • /
    • 2000
  • In this paper, we investigate contact characteristic of wheel-rail interface for rolling stock using the finite element method. Contact stress distribution due to the rail mounting slope is obtained in order to reduce the contact stress. Stress analysis of the rail, firstly, is performed one subjected to elliptical pressure based on Hertz theory. Secondly, we perform stress analysis of the rail subjected to contact stress obtained by this study. Results for the maximum shear stress, its location and the principal shear stress distribution are compared.

  • PDF

Torsional Rigidity of a Two-stage Cycloid Drive (이단 사이클로이드 드라이브의 비틀림 강성)

  • Kim, Kyoung-Hong;Lee, Chun-Se;Ahn, Hyeong-Joon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1217-1224
    • /
    • 2009
  • This paper presents a finite element (FE) analysis of the torsional rigidity of a two-stage cycloid drive. The cycloid disk makes contact with a number of pin-rollers simultaneously and eccentric shafts transmit not only torque of the spur gear stage to the cycloid disk, but also that of the cycloid disk to the output disk. Contacts between the disk and pin-rollers are simplified as linear spring elements, and the bearing of eccentric shaft is modeled as a rigid ring that has frictional contact to the disk and an elastic support. FE analysis for an ideal solid cycloid drive was performed and verified by a theoretical calculation. Accurate contact forces were then estimated by iterating between FE analysis for contact forces and Hertz theory calculations for nonlinear contact stiffness. In addition, torsional rigidity of the cycloid drive is analyzed to show that the bearing and nonlinear Hertz contact theory should be considered in analysis and design of a cycloid drive, which was verified with experiments. Finally, the effects of contact stiffness, bearing stiffness and cycloid disk structural stiffness according to the cycloid disk rotation on the torsional rigidity were investigated.

Dynamic Analysis of Engine Valve Train with Flexible Multibody Model Considering Contact between Components (부품간의 접촉을 고려한 유연체모델을 이용한 엔진 밸브트레인의 동특성 해석)

  • Hwang, Won-Gul;Sung, Won-Suk;Ahn, Ki-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.125-132
    • /
    • 2011
  • The dynamic characteristics of valve train are responsible for the dynamic performances of engine. We derived the equation of motion for 6 degrees of freedom model of the valve train. Computer model is also developed with flexible multibody model considering contact between components. The simulation results with these two models are compared with experimental results. We investigated the effect of the two spring models, TSDA (Translational Spring Damper Actuator) element and flexible body model, on the valve behavior and spring force. It is found that the dynamic behavior of the two models are not very different at normal operational velocity of the engine. By modeling contact between cam and tappet, the stress distributions of the cam were found. Using stress distribution obtained, contact width and contact stresses of the cam surface were calculated with Hertz contact theory.