• 제목/요약/키워드: Hepatic gene expression

검색결과 216건 처리시간 0.026초

Toxicogenomic Effect of Liver-toxic Environmental Chemicals in Human Hepatoma Cell Line

  • Kim, Seung-Jun;Park, Hye-Won;Yu, So-Yeon;Kim, Jun-Sub;Ha, Jung-Mi;Youn, Jong-Pil;An, Yu-Ri;Oh, Moon-Ju;Kim, Youn-Jung;Ryu, Jae-Chun;Hwang, Seung-Yong
    • Molecular & Cellular Toxicology
    • /
    • 제5권4호
    • /
    • pp.310-316
    • /
    • 2009
  • Some environmental chemicals have been shown to cause liver-toxicity as the result of bioaccumulation. Particularly, fungicides have been shown to cause varying degrees of hepatictoxicity and to disrupt steroid hormone homeostasis in in vivo models. The principal objective of this study was to evaluate the liver-toxic responses of environmental chemicals-in this case selected fungicides and parasiticides-in order to determine whether or not this agent differentially affected its toxicogenomic activities in hepatic tumor cell lines. To determine the gene expression profiles of 3 fungicides (triadimefon, myclobutanil, vinclozolin) and 1 parasiticide (dibutyl phthalate), we utilized a modified HazChem human array V2. Additionally, in order to observe the differential alterations in its time-dependent activities, we conducted two time (3 hr, 48 hr) exposures to the respective IC20 values of four chemicals. As a result, we analyzed the expression profiles of a total of 1638 genes, and we identified 70 positive significant genes and 144 negative significant genes using four fungicidic and parasiticidic chemicals, using SAM (Significant Analysis of Microarray) methods (q-value<0.5%). These genes were analyzed and identified as being related to apoptosis, stress responses, germ cell development, cofactor metabolism, and lipid metabolism in GO functions and pathways. Additionally, we found 120 genes among those time-dependently differentially expressed genes, using 1-way ANOVA (P-value<0.05). These genes were related to protein metabolism, stress responses, and positive regulation of apoptosis. These data support the conclusion that the four tested chemicals have common toxicogenomic effects and evidence respectively differential expression profiles according to exposure time.

LP-BM5 Leukemia Retrovirus 감염으로 유발된 Murine AIDS에서 Dehydroepiandrosterone Sulfate의 Th1/Th2 Cytokines의 발현 조절 및 산화적 스트레스 억제 효과 연구 (Dehydroepiandrosterone Sulfate Inhibited Immune Dysfunction Induced by LP-BM5 Leukemia Retrovirus Infection through Regulating Th1/Th2 Type Cytokine mRNA Expression and Oxidative Stress in Murine AIDS Model)

  • 이정민
    • 한국식품영양과학회지
    • /
    • 제35권10호
    • /
    • pp.1329-1335
    • /
    • 2006
  • AIDS로의 진행과정은 단순히 몇몇 기작에 의한 것이 아니라 여러 경로를 거쳐 발생하며 그 진행속도도 개개인에 따라 다양하게 나타나고 있다. 본 연구에서는 쥐 AIDS 모델을 이용하여 항산화호르몬으로 알려진 DHEAS의 면역조절 효과를 확인하고자 하였다. DHEAS의 투여는 LP-BM5 retrovirus 감염으로 인한 T와 B 임파구의 mitogenesis를 증가시켰으며 Th1/Th2 type cytokines의 발현에도 영향을 미쳤는데 주로 전사수준에서 작용한 것으로 생각된다/ 또한 retrovirus 감염으로 인한 간조직의 지질과산화 유발을 억제하여 조직 내의 항산화제인 vitamin E의 함량을 유지시킴으로 NF-kB의 활성화를 통한 retrovirus의 복제를 억제시켜 Th1/Th2 type cytokines의 불균형적인 발현을 저해하였을 것으로 여겨진다. 따라서 쥐 AIDS모델에 있어서 DHEAS의 면역조절 효과를 확인한 본 연구는 향후 HIV감염 이후 AIDS로의 진행 과정 시 항산화제의 역할과 기작 규명에 대한 가능성을 제시할 수 있을 것으로 생각된다.

Blockade of Retinol Metabolism Protects T Cell-Induced Hepatitis by Increasing Migration of Regulatory T Cells

  • Lee, Young-Sun;Yi, Hyon-Seung;Suh, Yang-Gun;Byun, Jin-Seok;Eun, Hyuk Soo;Kim, So Yeon;Seo, Wonhyo;Jeong, Jong-Min;Choi, Won-Mook;Kim, Myung-Ho;Kim, Ji Hoon;Park, Keun-Gyu;Jeong, Won-Il
    • Molecules and Cells
    • /
    • 제38권11호
    • /
    • pp.998-1006
    • /
    • 2015
  • Retinols are metabolized into retinoic acids by alcohol dehydrogenase (ADH) and retinaldehyde dehydrogenase (Raldh). However, their roles have yet to be clarified in hepatitis despite enriched retinols in hepatic stellate cells (HSCs). Therefore, we investigated the effects of retinols on Concanavalin A (Con A)-mediated hepatitis. Con A was injected into wild type (WT), Raldh1 knockout ($Raldh1^{-/-}$), $CCL2^{-/-}$ and $CCR2^{-/-}$ mice. For migration study of regulatory T cells (Tregs), we used in vivo and ex vivo adoptive transfer systems. Blockade of retinol metabolism in mice given 4-methylpyrazole, an inhibitor of ADH, and ablated Raldh1 gene manifested increased migration of Tregs, eventually protected against Con A-mediated hepatitis by decreasing interferon-${\gamma}$ in T cells. Moreover, interferon-${\gamma}$ treatment increased the expression of ADH3 and Raldh1, but it suppressed that of CCL2 and IL-6 in HSCs. However, the expression of CCL2 and IL-6 was inversely increased upon the pharmacologic or genetic ablation of ADH3 and Raldh1 in HSCs. Indeed, IL-6 treatment increased CCR2 expression of Tregs. In migration assay, ablated CCR2 in Tregs showed reduced migration to HSCs. In adoptive transfer of Tregs in vivo and ex vivo, Raldh1-deficient mice showed more increased migration of Tregs than WT mice. Furthermore, inhibited retinol metabolism increased survival rate (75%) compared with that of the controls (25%) in Con A-induced hepatitis. These results suggest that blockade of retinol metabolism protects against acute liver injury by increased Treg migration, and it may represent a novel therapeutic strategy to control T cell-mediated acute hepatitis.

Caerulein으로 유발된 흰쥐의 급성 췌장염에 대한 수념산(手拈散)의 효과 (The Effect of SuJeom-san on Caerulein-induced Acute Pancreatitis in Rats)

  • 박재석;최창원
    • 대한한방내과학회지
    • /
    • 제31권3호
    • /
    • pp.500-512
    • /
    • 2010
  • Objectives : This study was designed to investigate the effects of SuJeom-san(SJS) extract in rats with caerulein-induced acute pancreatitis (AP). Methods : We examined changes of pancreatic weight, histological, immunohistochemical and gene expression of cyclooxygenase (COX-2). Thirty-six adult male Sprague-Dawley rats were divided into six groups as follow: normal(Nor), caerulein-induced (Con), caerulein + cefotaxime sodium(CT), caerulein + SJS 3 mg/kg(SJSA), caerulein + SJS 6 mg/kg(SJSB) and caerulein + SJS 12 mg/kg(SJSC) groups. Pancreatic tissues of rats from all groups were removed for histological observation and light, and electron microscopic examination. Platelet activating factor(PAF) and Interleukin-6(IL-6) levels were determined spectrophotometrically. Results : The ratio of pancreas/body weight was significantly(p<0.05) increased in the Con compared with Nor, but significantly(p<0.05) decreased in SJSA, SJSB, SJSC and CT groups compared with Con. Caerulein administration significantly increased(p<0.05) the levels of amylase, but SJSA, SJSB, SJSC and CT significantly(p<0.05) reduced the levels of these enzymes. The levels of platelet activating factor(PAF) increased in Con compared with Nor, but decreased in SJSA, SJSB, SJSC and CT groups compared with Con. Interleukin-6(IL-6) levels increased significantly in all groups compared to Nor at 6 hrs, but significantly(p<0.05) reduced in SJSA, SJSB, SJSC and CT groups compared with Con at 24 hrs. The levels of tumor necrosis factor(TNF)-${\alpha}$ levels increased in all groups compared to Nor at 6 hrs, but significantly(p<0.05) reduced in SJSA, SJSB, SJSC and CT groups compared with Con at 24 hrs. The COX-2 positive materials were observed in the pancreas of the Con, but these positive materials were decreased in the SJS extract treatment group. Conclusion : SJS is potentially capable of limiting pancreatic damage during AP by restoring the fine structure of acinar cells and tissue; therefore, we conclude that SJS may have beneficial effects in the treatment of caerulein-induced AP.

Anti-inflammatory and antioxidant effects of umbelliferone in chronic alcohol-fed rats

  • Sim, Mi-Ok;Lee, Hae-In;Ham, Ju Ri;Seo, Kwon-Il;Kim, Myung-Joo;Lee, Mi-Kyung
    • Nutrition Research and Practice
    • /
    • 제9권4호
    • /
    • pp.364-369
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Inflammation is associated with various types of acute and chronic alcohol liver diseases. In this study, we examined whether umbelliferone (7-hydroxycoumarin, UF) ameliorates chronic alcohol-induced liver damage by modulating inflammatory response and the antioxidant system. METHODS: Rats were fed a Liber-Decarli liquid diet containing 5% alcohol with or without UF (0.05 g/L) for 8 weeks, while normal rats received an isocaloric carbohydrate liquid diet. RESULTS: Chronic alcohol intake significantly increased serum tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and interleukin 6 levels and decreased interleukin 10 level; however, UF supplementation reversed the cytokines related to liver damage. UF significantly suppressed hepatic lipopolysaccharide binding protein, toll-like receptor 4 (TLR4), nuclear factor kappa B, and TNF-${\alpha}$ gene expression increases in response to chronic alcohol intake. Masson's trichrome staining revealed that UF improved mild hepatic fibrosis caused by alcohol, and UF also significantly increased the mRNA expressions and activities of superoxide dismutase and catalase in liver, and thus, decreased lipid peroxide and mitochondrial hydrogen peroxide levels. CONCLUSIONS: The findings of this study indicate that UF protects against alcohol-induced liver damage by inhibiting the TLR4 signaling pathway and activating the antioxidant system.

A Mixture of Ethanol Extracts of Persimmon Leaf and Citrus junos Sieb Improves Blood Coagulation Parameters and Ameliorates Lipid Metabolism Disturbances Caused by Diet-Induced Obesity in C57BL/6J Mice

  • Kim, Ae Hyang;Kim, Hye Jin;Ryu, Ri;Han, Hye Jin;Han, Young Ji;Lee, Mi-Kyung;Choi, Myung-Sook;Park, Yong Bok
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권2호
    • /
    • pp.295-308
    • /
    • 2016
  • This study investigated the effects of a flavonoid-rich ethanol extract of persimmon leaf (PL), an ethanol extract of Citrus junos Sieb (CJS), and a PL-CJS mixture (MPC) on mice fed a high-fat diet (HFD). We sought to elucidate the mechanisms of biological activity of these substances using measurements of blood coagulation indices and lipid metabolism parameters. C57BL/6J mice were fed a HFD with PL (0.5% (w/w)), CJS (0.1% (w/w)), or MPC (PL 0.5%, CJS 0.1% (w/w)) for 10 weeks. In comparison with data obtained for mice in the untreated HFD group, consumption of MPC remarkably prolonged the activated partial thromboplastin time (aPTT) and prothrombin time (PT), whereas exposure to PL prolonged aPTT only. Lower levels of plasma total cholesterol, hepatic cholesterol, and erythrocyte thiobarbituric acid-reactive substances, hepatic HMG-CoA reductase, and decreased SREBP-1c gene expression were observed in mice that received PL and MPC supplements compared with the respective values detected in the untreated HFD animals. Our results indicate that PL and MPC may have beneficial effects on blood circulation and lipid metabolism in obese mice.

Nicotinamide riboside regulates inflammation and mitochondrial markers in AML12 hepatocytes

  • Lee, Hee Jae;Yang, Soo Jin
    • Nutrition Research and Practice
    • /
    • 제13권1호
    • /
    • pp.3-10
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: The $NAD^+$ precursor nicotinamide riboside (NR) is a type of vitamin $B_3$ found in cow's milk and yeast-containing food products such as beer. Recent studies suggested that NR prevents hearing loss, high-fat diet-induced obesity, Alzheimer's disease, and mitochondrial myopathy. The objective of this study was to investigate the effects of NR on inflammation and mitochondrial biogenesis in AML12 mouse hepatocytes. MATERIALS/METHODS: A subset of hepatocytes was treated with palmitic acid (PA; $250{\mu}M$) for 48 h to induce hepatocyte steatosis. The hepatocytes were treated with NR ($10{\mu}M$ and 10 mM) for 24 h with and without PA. The cell viability and the levels of sirtuins, inflammatory markers, and mitochondrial markers were analyzed. RESULTS: Cytotoxicity of NR was examined by PrestoBlue assay. Exposure to NR had no effect on cell viability or morphology. Gene expression of sirtuin 1 (Sirt1) and Sirt3 was significantly upregulated by NR in PA-treated hepatocytes. However, Sirt1 activities were increased in hepatocytes treated with low-dose NR. Hepatic pro-inflammatory markers including tumor necrosis factor-alpha and interleukin-6 were decreased in NR-treated cells. NR upregulated anti-inflammatory molecule adiponectin, and, tended to down-regulate hepatokine fetuin-A in PA-treated hepatocytes, suggesting its inverse regulation on these cytokines. NR increased levels of mitochondrial markers including peroxisome proliferator-activated receptor ${\gamma}$ coactivator-$1{\alpha}$, carnitine palmitoyltransferase 1, uncoupling protein 2, transcription factor A, mitochondrial and mitochondrial DNA in PA-treated hepatocytes. CONCLUSIONS: These data demonstrated that NR attenuated hepatic inflammation and increased levels of mitochondrial markers in hepatocytes.

Effects of age and diet forms on growth-development patterns, serum metabolism indicators, and parameters of body fat deposition in Cherry Valley ducks

  • Lv, Gang;Zeng, Qiufeng;Ding, Xuemei;Bai, Shiping;Zhang, Keying
    • Animal Bioscience
    • /
    • 제35권2호
    • /
    • pp.247-259
    • /
    • 2022
  • Objective: This study was conducted to investigate the effects of age and diet forms on growth-development patterns, serum metabolism indicators, and parameters of body fat deposition in Cherry Valley ducks. Methods: According to the hatching age and initial weight, a total of 150 1-day-old male SM3 Cherry Valley ducks were randomly assigned to two diet forms (pellet vs powder form). Each treatment had with 5 replicates per treatment and 15 meat ducks per replicate. The study lasted 42 d, which was divided into two periods (1 to 21 vs 22 to 42 d). Results: Our results showed that compared with powder group, ducks in pellet group had greater growth performance during different period (p<0.05). The inflection point was 24 d and was not numerically affected by diet forms. Increasing age (42 vs 21 d) significantly increased the weight of body fat and hepatic fat metabolism related enzyme activities in ducks (p<0.05), meanwhile, increasing age (42 vs 21 d) improved serum metabolism indicators and decreased mRNA expression levels of fat metabolism-related genes in liver (p<0.05). Ducks fed different diets (pellet vs powder form) increased growth performance as well as the weight of body fat and improved serum metabolism indicators (p<0.05). In addition, interactions were found between age and diet forms on the levels of serum metabolism indicators in ducks (p<0.05). Conclusion: In conclusion, powder feed reduced growth performance of ducks, and the day of inflection point was 24 days old. Ducks with higher age or fed with pellet diet showed higher fat deposition. The effect of age and feed forms on body fat deposition might result from changes in the contents of serum metabolism indicators, key enzyme activity of lipid production, and hepatic gene expressions.

Ellagic acid, a functional food component, ameliorates functionality of reverse cholesterol transport in murine model of atherosclerosis

  • Sin-Hye Park;Min-Kyung Kang;Dong Yeon Kim;Soon Sung Lim;Il-Jun Kang;Young-Hee Kang
    • Nutrition Research and Practice
    • /
    • 제18권2호
    • /
    • pp.194-209
    • /
    • 2024
  • BACKGROUND/OBJECTIVES: High levels of plasma low-density lipoprotein (LDL) cholesterol are an important determinant of atherosclerotic lesion formation. The disruption of cholesterol efflux or reverse cholesterol transport (RCT) in peripheral tissues and macrophages may promote atherogenesis. The aim of the current study was to examine whether bioactive ellagic acid, a functional food component, improved RCT functionality and high-density lipoprotein (HDL) function in diet-induced atherogenesis of apolipoproteins E (apoE) knockout (KO) mice. MATERIALS/METHODS: Wild type mice and apoE KO mice were fed a high-cholesterol Paigen diet for 10 weeks to induce hypercholesterolemia and atherosclerosis, and concomitantly received 10 mg/kg ellagic acid via gavage. RESULTS: Supplying ellagic acid enhanced induction of apoE and ATP-binding cassette (ABC) transporter G1 in oxidized LDL-exposed macrophages, facilitating cholesterol efflux associated with RCT. Oral administration of ellagic acid to apoE KO mice fed on Paigen diet improved hypercholesterolemia with reduced atherogenic index. This compound enhanced the expression of ABC transporters in peritoneal macrophages isolated from apoE KO mice fed on Paigen diet, indicating increased cholesterol efflux. Plasma levels of cholesterol ester transport protein and phospholipid transport protein involved in RCT were elevated in mice lack of apoE gene, which was substantially reduced by supplementing ellagic acid to Paigen diet-fed mice. In addition, ellagic acid attenuated hepatic lipid accumulation in apoE KO mice, evidenced by staining of hematoxylin and eosin and oil red O. Furthermore, the supplementation of 10 mg/kg ellagic acid favorably influenced the transcriptional levels of hepatic LDL receptor and scavenger receptor-B1 in Paigen diet-fed apoE KO mice. CONCLUSION: Ellagic acid may be an athero-protective dietary compound encumbering diet-induced atherogenesis though improving the RCT functionality.

PKHD1 Gene Silencing May Cause Cell Abnormal Proliferation through Modulation of Intracellular Calcium in Autosomal Recessive Polycystic Kidney Disease

  • Yang, Ji-Yun;Zhang, Sizhong;Zhou, Qin;Guo, Hong;Zhang, Ke;Zheng, Rong;Xiao, Cuiying
    • BMB Reports
    • /
    • 제40권4호
    • /
    • pp.467-474
    • /
    • 2007
  • Autosomal recessive polycystic kidney disease (ARPKD) is one of the important genetic disorders in pediatric practice. Mutation of the polycystic kidney and hepatic disease gene 1 (PKHD1) was identified as the cause of ARPKD. The gene encodes a 67-exon transcript for a large protein of 4074 amino acids termed fibrocystin, but its function remains unknown. The neoplastic-like in cystic epithelial proliferation and the epidermal growth factor/epidermal growth factor receptor (EGF/EGFR) axis overactivity are known as the most important characteristics of ARPKD. Since the misregulation of $Ca^{2+}$ signaling may lead to aberrant structure and function of the collecting ducts in kidney of rat with ARPKD, present study aimed to investigate the further mechanisms of abnormal proliferation of cystic cells by inhibition of PKHD1 expression. For this, a stable PKHD1-silenced HEK-293T cell line was established. Then cell proliferation rates, intracellular $Ca^{2+}$ concentration and extracellular signal-regulated kinase 1/2 (ERK1/2) activity were assessed after treatment with EGF, a calcium channel blocker and agonist, verapamil and Bay K8644. It was found that PKHD1-silenced HEK-293T cell lines were hyperproliferative to EGF stimulation. Also PKHD1-silencing lowered the intracellular $Ca^{2+}$ and caused EGF-induced ERK1/2 overactivation in the cells. An increase of intracellular $Ca^{2+}$ in PKHD1-silenced cells repressed the EGF-dependent ERK1/2 activation and the hyperproliferative response to EGF stimulation. Thus, inhibition of PKHD1 can cause EGF-induced excessive proliferation through decreasing intracellular $Ca^{2+}$ resulting in EGF-induced ERK1/2 activation. Our results suggest that the loss of fibrocystin may lead to abnormal proliferation in kidney epithelial cells and cyst formation in ARPKD by modulation of intracellular $Ca^{2+}$.