• Title/Summary/Keyword: Hepatic cells

Search Result 648, Processing Time 0.022 seconds

Antifibrotic Activity of Manassantin B from Saururus chinensis in HSC-T6 Hepatic Stellate Cells

  • Lee, Mi-Kyeong;Yang, Hye-kyung;Yang, Eun-Sun;Kim, Young-Choong;Sung, Sang-Hyun
    • Natural Product Sciences
    • /
    • v.14 no.2
    • /
    • pp.118-121
    • /
    • 2008
  • Manassantin B, a dilignan isolated from Saururus chinensis, significantly inhibited proliferation in HSC-T6 cells in concentration- and time-dependent manners. In addition, treatment of HSC-T6 cells with manassantin B changed cell morphology from flattened myofibroblastic membranous morphology, representing activation state, to slender shape, representing quiescent state. Furthermore, manassantin B effectively reduced collagen content in HSC-T6 cells. These results suggested that manassantin B exerted antifibrotic activity in HSCT6 cells, in part, via inhibition of cell proliferation and decrease of collagen production.

Endoplasmic Reticulum Stress Activates Hepatic Macrophages through PERK-hnRNPA1 Signaling

  • Ari Kwon;Yun Seok Kim;Jiyoon Kim;Ja Hyun Koo
    • Biomolecules & Therapeutics
    • /
    • v.32 no.3
    • /
    • pp.341-348
    • /
    • 2024
  • Endoplasmic reticulum (ER) stress plays a crucial role in liver diseases, affecting various types of hepatic cells. While studies have focused on the link between ER stress and hepatocytes as well as hepatic stellate cells (HSCs), the precise involvement of hepatic macrophages in ER stress-induced liver injury remains poorly understood. Here, we examined the effects of ER stress on hepatic macrophages and their role in liver injury. Acute ER stress led to the accumulation and activation of hepatic macrophages, which preceded hepatocyte apoptosis. Notably, macrophage depletion mitigated liver injury induced by ER stress, underscoring their detrimental role. Mechanistic studies revealed that ER stress stimulates macrophages predominantly via the PERK signaling pathway, regardless of its canonical substrate ATF4. hnRNPA1 has been identified as a crucial mediator of PERK-driven macrophage activation, as the overexpression of hnRNPA1 effectively reduced ER stress and suppressed pro-inflammatory activation. We observed that hnRNPA1 interacts with mRNAs that encode UPR-related proteins, indicating its role in the regulation of ER stress response in macrophages. These findings illuminate the cell type-specific responses to ER stress and the significance of hepatic macrophages in ER stress-induced liver injury. Collectively, the PERK-hnRNPA1 axis has been discovered as a molecular mechanism for macrophage activation, presenting prospective therapeutic targets for inflammatory hepatic diseases such as acute liver injury.

Role of Kupffer Cells in Cold/warm Ischemia-Reperfusion Injury or Rat Liver

  • Lee, Young-Goo;Lee, Sang-Ho;Lee, Sun-Mee
    • Archives of Pharmacal Research
    • /
    • v.23 no.6
    • /
    • pp.620-625
    • /
    • 2000
  • The mechanisms of liver injury from cold storage and reperfusion are not completely under-stood. The aim of the present study was to investigate whether the inactivation of Kupffer cells (KCs) by gadolinium chloride ($GdCl_3$) modulates ischemia-reperfusion injury in the rat liver. Hepatic function was assessed using an isolated perfused rat liver model. In livers subjected to cold storage at $4^{\circ}C$ in University of Wisconsin solution for 24 hrs and to 20 min rewarm-ing ischemia, oxygen uptake was markedly decreased, Kupffer cell phagocytosis was stimulated, releases of purine nucleoside phosphorylase and lactate dehydrogenase were increased as compared with control livers. Pretreatment of rats with $GdCl_3$) , a selective KC toxicant, suppressed kupffer cell activity, and reduced the grade of hepatic injury induced by ischemia-reperfusion. While the initial mixed function oxidation of 7-ethoxycoumarin was not different from that found in the control livers, the subsequent conjugation of its meta-bolite to sulfate and glucuronide esters was suppressed by ischemia-reperfusion, CdCl$_3$restored sulfation and glucuronidation capacities to the level of the control liver. Our findings suggest that Kupffer cells could play an important role in cold/warm ischemia-reperfusion hepatic injury.

  • PDF

Histopathological Studies on Experimental Nitrate Poisoning in Rabbits (질산염중독(窒酸鹽中毒)에 관한 병리조직학적연구(病理組織學的硏究))

  • Kim, Soon Bok
    • Korean Journal of Veterinary Research
    • /
    • v.16 no.1
    • /
    • pp.97-103
    • /
    • 1976
  • In order to clarify the histopathological changes resulting from nitrate poisoning, rabbits were experimentally poisoned by the oral administration of $KNO_3$ or $NaNO_2$ and examined clinically and histopathologically. In addition, the quantitative changes of glycogen level in hepatic cells were histochemically observed. The results obtained were summarized as follows: 1. Clinical symptoms observed from the acute cases which died within 2 hours after the administration were severe cyanosis of visible mucosa, frequent urination, and dyspnea. However, in chronic cases administrated daily with $KNO_3$ for 43, 50 and 74 days respectively, no marked symptoms were observed. 2. Macroscopic changes observed in acute cases were severe methemoglobinemia, cloudy swelling of hepatic cells, hemorrhage and hyperemia of gastric mucosa, and hyperemia of other organs. In chronic cases there were marked hyperemia, dark-red coloring and increasing of consistency in liver and kidney, and swelling of spleen. 3. Microscopic changes observed in acute cases were hemorrhage and hyperemia of various organs, cloudy swelling and centrilobular necrosis of hepatic cells and necrosis of convoluted tubular epithelium in kidney. In chronic cases there were round cell infiltration of the interlobular connective tissue and epithelial proliferation of interlobular bile ducts in the liver, and necrosis of the convoluted tubular epithelium and proliferation of interstitial connective tissue in kidney, thickening of alveolar septa of lungs, activated hemopoiesis of bone marrow, and myeloid metaplasia of sqlenic pulp. 4. Glycogen storage in liver cells was decreased in acute cases, on the contrary, increased in chronic cases.

  • PDF

The Cone (Pinus densiflora) Induced Apoptosis and Autophagy in Hepatic Stellate Cells

  • Tae-Won Jang;Da-Yoon Lee;So-Yeon Han;Hye-Jeong Park;Seo-Yoon Park;Jun-Hwan Jeong;Yoon-Jae Kwon;Jae-Ho Park
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.106-106
    • /
    • 2022
  • The cone of Red Pine (Pinus densiflora), which has been used as a drug in traditional medicine. Its ethyl acetate fraction was reported to exert antioxidant, anti-melanogenesis, and anti-inflammation activites. Apoptosis of hepatic stellate cells (LX-2) is regarding as a potential strategy for alleviation of hepatic fibrosis. We conducted to investigated whether the treatment of cone has a potential to control of some factors related in apoptosis and autophagy in cell signaling pathways. We suggest that the cone induced apoptosis through confirming the expression levels of genes (cPARP, Bcl-XL, Bax, p53, and caspase-3) in LX-2 cells. Also, the cone may regulate autophagy (LC3, p62, Beclin-1, and ATG12). Remarkably, the treatment of cone may affect to formation of autophagosomes in the immunofluorescence image in live cells. These findings suggest that the ethyl acetate fraction from the cone of Red Pine (P. densiflora) may have potential as an alternative therapeutic agent for the alleviation and prevention of liver fibrosis.

  • PDF

Inhibition by Hyaluronan of Collagen-Induced Activation of Hepatic Stellate Cells

  • Lee, Gum-Hwa;Cho, Min-Kyung;Kim, Sang-Geon
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.120-120
    • /
    • 2003
  • Synthesis and distribution of extracellular matrix (ECM) components are dynamically altered in response to the pathophysiological processes including infection, inflammation and apoptosis. In particular, the levels of hyaluronan (HA) change with concomitant increases in the levels of collagen (e.g. type I collagen) and fibronectin in chronic liver diseases.(omitted)

  • PDF

Effect of Samul-tang (Siwu-tang) on Procollagen Synthesis in Cultured Murine Hepatic Non-parenchymal Cells

  • Kim, Young-Chul;Lee, Jang-Hoon;Woo, Hong-Jung
    • The Journal of Korean Medicine
    • /
    • v.24 no.4
    • /
    • pp.120-126
    • /
    • 2003
  • Object : This study was done to evaluate the inhibitory effect of Samul-tang (Siwu-tang) on collagen production by cultured murine hepatic non-parenchymal cells. Methods : Hepatic non-parenchymal cells were cultured from normal Sprague-Dawley rats and established in a primary cell culture on uncoated plastic culture plates. The Samul-tang (Siwu-tang) was treated into the cell culture media for 72 hours and the cells were harvested for analysis. Analyses were done on cell proliferation, [3H]thymidine incorporation assay and procollagen type IC-peptide. Results : The cultured cells resembled fibroblasts in shape and produced procollagen which is consistent to fibrogenesis in vivo. Proliferation of the non-parenchymal cells was inhibited slightly and the [3H]thymidine incorporation assay showed a dose-dependent decrease by Samul-tang (Siwu-tang) treatment. Production of procollagen type I C-peptide was decreased by low-concentration treatment of the Samul-tang (Siwu-tang), but increased by high-concentration treatment. Conclusion : It seemed that the cells were responding to the Samul-tang (Siwu-tang) in low-concentration, thus producing less collagen. However, when the drug was administered with high enough concentration to cause excessive stimulation of cells, it seemed that the activated cells might overly produce procollagen, the precursor of collagen, thus aggravating fibrosis of the liver. So, it is considered that the proper concentration of Samul-tang (Siwu-tang) is important when treating patients with liver cirrhosis based on the patients' status.

  • PDF

Ultrastructural Changes of Fat-storing Cells in Experimental Hepatic Fibrosis (실험적 간섬유화에서 Fat-storing Cell의 미세구조의 변화에 대한 연구)

  • Kim, Mi-Jin;Choi, Won-Hee;Lee, Tae-Sook
    • Journal of Yeungnam Medical Science
    • /
    • v.9 no.2
    • /
    • pp.224-238
    • /
    • 1992
  • Hepatic fibrosis was induced in Sprague-Dawley rats to evaluate the ultrastructural changes of fat-storing cells(Ito cells). For experimental induction of liver fibrosis, the rats were administered intraperitoneally with 0.5ml of 50% $Ccl_4$ solution per Kg body weight, twice weekly for 12 weeks. The rats were sacrified every week. The liver tissues were examined under light and eletron microscopes. And the immunohistochemical study of desmin was also performed. The results were summarized as follows : Light microscopic findings : The cellular infiltrations with inflammatory cells and Kupffer cells developed from 1 week after $Ccl_4$ injection, and were the most severe in 4 weeks. The strong immunoreactivity for desmin was also evident in 4 weeks. The centrilobular necrosis and fibrosis developed from 2 weeks after injection, and the necrosis persisted until 8 weeks. The progress of fibrosis was accompanied by decreases in cellular infiltration and reactivity for desmin, and increased gradual nodular formation was also observed. The cirrhosis was developed after 10 weeks. Electron microscopic findings : An increase in number of fat-storing cells was observed from 1 week after injection. Transitional cells characterized by a depletion of lipid droplets and a hypertrophy of the rER appeared after 2 weeks. The number of transitional cells with abundant collagen fibers in the extracellular spaces increased in 4 weeks. With progression of fibrosis the number of fat-storing cells decreased and proliferating fibroblasts with dilated rER were observed. According to these results it was revealed that there was an apparent transition from fat-storing cells to transitional cells and to fibroblasts. These cells had a few similar characteristics and may belong to the same cell population. Thus it was suggested that fat-storing cells might play an important role in hepatic fibrosis.

  • PDF

Isorhamnetin from Oenanthe javanica Attenuates Fibrosis in Rat Hepatic Stellate Cells via Inhibition of ERK Signaling Pathway

  • Lee, Mi-Kyeong;Yang, Hye-Kyung;Ha, Na-Ry;Sung, Sang-Hyun;Kim, Young-Choong
    • Natural Product Sciences
    • /
    • v.14 no.2
    • /
    • pp.81-85
    • /
    • 2008
  • Isorhamnetin isolated from Oenanthe javanica significantly inhibited proliferation and collagen production in HSC-T6 cells in concentration- and time-dependent manners. Pretreatment of HSC-T6 cells with isorhamnetin significantly inhibited serum-induced ERK phosphorylation, in a similar manner as PD98059, a known MEK inhibitor. These results suggested that isorhamnetin reduced collagen production in HSC-T6 cells, in part, via inhibition of ERK signaling pathway.

The Natural Killer Cell Response to HCV Infection

  • Ahlenstiel, Golo
    • IMMUNE NETWORK
    • /
    • v.13 no.5
    • /
    • pp.168-176
    • /
    • 2013
  • In the last few years major progress has been made in better understanding the role of natural killer (NK) cells in hepatitis C virus (HCV) infection. This includes multiple pathways by which HCV impairs or limits NK cells activation. Based on current genetic and functional data, a picture is emerging where only a rapid and strong NK cell response early on during infection which results in strong T cell responses and possible subsequent clearance, whereas chronic HCV infection is associated with dysfunctional or biased NK cells phenotypes. The hallmark of this NK cell dysfunction is persistent activation promoting ongoing hepatitis and hepatocyte damage, while being unable to clear HCV due to impaired IFN-${\gamma}$ responses. Furthermore, some data suggests certain chronically activated subsets that are $NKp46^{high}$ may be particularly active against hepatic stellate cells, a key player in hepatic fibrogenesis. Finally, the role of NK cells during HCV therapy, HCV recurrence after liver transplant and hepatocellular carcinoma are discussed.