• Title/Summary/Keyword: Hepatic Genes

Search Result 201, Processing Time 0.03 seconds

Anti-obesity effects of hot water extract from Wasabi (Wasabia japonica Matsum.) leaves in mice fed high-fat diets

  • Yamasaki, Masayuki;Ogawa, Tetsuro;Wang, Li;Katsube, Takuya;Yamasaki, Yukikazu;Sun, Xufeng;Shiwaku, Kuninori
    • Nutrition Research and Practice
    • /
    • v.7 no.4
    • /
    • pp.267-272
    • /
    • 2013
  • The anti-obesity effects of a hot water extract from wasabi (Wasabia japonica Matsum.) leaves (WLE), without its specific pungent constituents, such as allyl-isothiocyanate, were investigated in high fat-diet induced mice. C57J/BL mice were fed a high-fat diet (control group) or a high-fat diet supplemented with 5% WLE (WLE group). Physical parameters and blood profiles were determined. Gene expression associated with lipid metabolism in liver and white adipose tissue were analyzed. After 120 days of feeding, significantly lower body weight gain, liver weight and epididymal white adipose tissue weight was observed in the WLE group compared to the control group. In liver gene expression within the WLE group, PPAR${\alpha}$ was significantly enhanced and SREBP-1c was significantly suppressed. Subsequent downstream genes controlled by these regulators were significantly suppressed. In epididymal white adipose tissue of the WLE group, expression of leptin, PPAR${\gamma}$, and C/EBP${\alpha}$ were significantly suppressed and adiponectin was significantly enhanced. Acox, related to fatty acid oxidization in adipocytes, was also enhanced. Our results demonstrate that the WLE dietary supplement induces mild suppression of obesity in a high-fat diet induced mice, possibly due to suppression of lipid accumulation in liver and white adipose tissue.

Deficiency or activation of peroxisome proliferator-activated receptor α reduces the tissue concentrations of endogenously synthesized docosahexaenoic acid in C57BL/6J mice

  • Hsiao, Wen-Ting;Su, Hui-Min;Su, Kuan-Pin;Chen, Szu-Han;Wu, Hai-Ping;You, Yi-Ling;Fu, Ru-Huei;Chao, Pei-Min
    • Nutrition Research and Practice
    • /
    • v.13 no.4
    • /
    • pp.286-294
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Docosahexaenoic acid (DHA), an n-3 long chain polyunsaturated fatty acid (LCPUFA), is acquired by dietary intake or the in vivo conversion of ${\alpha}$-linolenic acid. Many enzymes participating in LCPUFA synthesis are regulated by peroxisome proliferator-activated receptor alpha ($PPAR{\alpha}$). Therefore, it was hypothesized that the tissue accretion of endogenously synthesized DHA could be modified by $PPAR{\alpha}$. MATERIALS/METHODS: The tissue DHA concentrations and mRNA levels of genes participating in DHA biosynthesis were compared among $PPAR{\alpha}$ homozygous (KO), heterozygous (HZ), and wild type (WT) mice (Exp I), and between WT mice treated with clofibrate ($PPAR{\alpha}$ agonist) or those not treated (Exp II). In ExpII, the expression levels of the proteins associated with DHA function in the brain cortex and retina were also measured. An n3-PUFA depleted/replenished regimen was applied to mitigate the confounding effects of maternal DHA. RESULTS: $PPAR{\alpha}$ ablation reduced the hepatic Acox, Fads1, and Fads2 mRNA levels, as well as the DHA concentration in the liver, but not in the brain cortex. In contrast, $PPAR{\alpha}$ activation increased hepatic Acox, Fads1, Fads2, and Elovl5 mRNA levels, but reduced the DHA concentrations in the liver, retina, and phospholipid of brain cortex, and decreased mRNA and protein levels of the brain-derived neurotrophic factor in brain cortex. CONCLUSIONS: LCPUFA enzyme expression was altered by $PPAR{\alpha}$. Either $PPAR{\alpha}$ deficiency or activation-decreased tissue DHA concentration is a stimulus for further studies to determine the functional significance.

Ameliorating Effects of Geumnyeonyijin-tang Water Extract on Obesity-Induced T2DM and Related Complications in Mice

  • Lee, Yoo-na;Baek, Kyungmin;Ku, Sae-kwang
    • The Journal of Internal Korean Medicine
    • /
    • v.43 no.4
    • /
    • pp.606-624
    • /
    • 2022
  • Objective: The aim of this study was to compare the effects of different doses of Geumnyeonyijin-tang (GNYJT) water extracts with those of metformin (250 mg/kg) in mild diabetic-obese mice. Methods and Results: The 48 mice were divided into 1 normal pellet diet (NFD) group and 5 high-fat diet (HFD) groups. At the end of 12 weeks of oral administration of metformin (250 mg/kg) or GNYJT water extracts (400, 200, or100 mg/kg), the effects were evaluated. The HFD control mice showed noticeable increases in body weight, adipose tissue density, fat pad weight of the periovarian and abdominal wall, and insulin, blood glucose, and HbA1c levels, with decreases in serum HDL levels. Increases in the periovarian and dorsal abdominal fat pad, regions of steatohepatitis, adipocyte hypertrophy, and hepatocyte hypertrophy were also discovered. The HFD group showed a decline in glucose levels and elevation of hepatic gluconeogenesis, suggesting an HFD-induced AMPK downregulation related to glucose dysregulation, as well as lipid metabolism related to obese insulin-resistant type II diabetes, dyslipidemia, and oxidative stress related diabetic hepatopathy (non-alcoholic fatty liver disease, NAFLD). Conclusion: Assessment of the key parameters for inhibition of diabetes and related complications in HFD-fed diabetic-obese mice demonstrated that GNYJT water extracts have favorable ameliorating effects. The effect of GNYJT was manifested through the stimulation of AMPK upregulation of related hepatic glucose enzyme activities and expression of lipid metabolism-related genes. Therefore, appropriate oral dosages of GNYJT could be promising as a new preventive candidate for controlling diabetes and related complications. Further screening of biologically active compounds, elucidation of detailed mechanisms, and more animal studies are warranted.

Effects of age and diet forms on growth-development patterns, serum metabolism indicators, and parameters of body fat deposition in Cherry Valley ducks

  • Lv, Gang;Zeng, Qiufeng;Ding, Xuemei;Bai, Shiping;Zhang, Keying
    • Animal Bioscience
    • /
    • v.35 no.2
    • /
    • pp.247-259
    • /
    • 2022
  • Objective: This study was conducted to investigate the effects of age and diet forms on growth-development patterns, serum metabolism indicators, and parameters of body fat deposition in Cherry Valley ducks. Methods: According to the hatching age and initial weight, a total of 150 1-day-old male SM3 Cherry Valley ducks were randomly assigned to two diet forms (pellet vs powder form). Each treatment had with 5 replicates per treatment and 15 meat ducks per replicate. The study lasted 42 d, which was divided into two periods (1 to 21 vs 22 to 42 d). Results: Our results showed that compared with powder group, ducks in pellet group had greater growth performance during different period (p<0.05). The inflection point was 24 d and was not numerically affected by diet forms. Increasing age (42 vs 21 d) significantly increased the weight of body fat and hepatic fat metabolism related enzyme activities in ducks (p<0.05), meanwhile, increasing age (42 vs 21 d) improved serum metabolism indicators and decreased mRNA expression levels of fat metabolism-related genes in liver (p<0.05). Ducks fed different diets (pellet vs powder form) increased growth performance as well as the weight of body fat and improved serum metabolism indicators (p<0.05). In addition, interactions were found between age and diet forms on the levels of serum metabolism indicators in ducks (p<0.05). Conclusion: In conclusion, powder feed reduced growth performance of ducks, and the day of inflection point was 24 days old. Ducks with higher age or fed with pellet diet showed higher fat deposition. The effect of age and feed forms on body fat deposition might result from changes in the contents of serum metabolism indicators, key enzyme activity of lipid production, and hepatic gene expressions.

Effects of Fragaria Orientalis Water Extract on Adipogenesis in Diet-induced Obese C57BL/6 Mice (Fragaria Orientalis 물 추출물이 고지방식이를 급여한 C57BL/6 Mice에서 비만 관련 인자에 미치는 영향)

  • Moon-Yeol Choi;Mi Hyung Kim;Mi Ryeo Kim
    • The Korea Journal of Herbology
    • /
    • v.39 no.4
    • /
    • pp.1-9
    • /
    • 2024
  • Objective : In this study, the anti-obesity effect of Fragaria orientalis (FO) on high-fat diet-induced obese mice was investigated. Drug treatment methods are widely used as obesity treatment methods, but research using various natural products is being conducted due to safety concerns. This study aims to evaluate the anti-obesity effect of FO extract, a natural product derived from Mongolia. Methods : C57BL/6 mice were used and divided into three groups, normal diet group, high-fat diet group, and high-fat diet with FO oral treatment group at a dose of 300 mg/kg. Extract was orally provided everyday for 6 weeks. Body Weight and food intake were measured every 2 days and blood lipid profiles and liver function in the sacrificed mice were evaluated. In addition, protein expression in hepatic tissue and histomorphological changes in liver and adipose tissue were observed. Results : Body weight, adipose tissue weight and FER were significantly lower in a high-fat diet with FO treatment than fed only high-fat diet. There was a significant difference between the high-fat diet and the FO-treated high-fat diet mice. As a result of analyzing lipid metabolism-related genes in hepatic tissue, all of p-AMPK, p-ACC, PPAR-α, CPT-1, and UCP-1 showed significant increases, and PPAR-γ also decreased significantly compared to the high-fat diet group. Conclusion : Overall, these results indicate that FO is effectual in improving obesity, suggesting that it can be used as a possible material for anti-obesity agents or functional supplements for weight control.

Effect of Phaseolus angularis Seed on Experimental Cellular Model of Nonalcoholic Fatty Liver Disease (적소두가 비알코올성 지방간 질환 세포 모델에 미치는 효과)

  • Jang, Yeong Suk;Seo, Ji Yun;Kwun, Min Jung;Kwon, Jung Nam;Lee, In;Hong, Jin Woo;Kim, So Yeon;Choi, Jun Yong;Park, Seong Ha;Joo, Myungsoo;Han, Chang Woo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.6
    • /
    • pp.802-808
    • /
    • 2013
  • Here we tried to uncover the potential anti-lipogenic effect and the underlying mechanism of Phaseolus angularis seed in a cellular model of nonalcoholic fatty liver disease (NAFLD) induced in HepG2 cells. Ethanol extract of Phaseolus angularis seed (JSD) was prepared. HepG2 cells were incubated in palmitate containing media to induce intracellular lipid accumulation, and co-treated with JSD for 16 hrs before examine intracellular lipid content. In control group, the cells were not co-treated with JSD. We measured the effects of JSD on liver X receptor ${\alpha}$ ($LXR{\alpha}$) and sterol regulatory element-binding transcription factor-1c (SREBP-1c) expression, transcription level of lipogenic genes, including acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), stearoyl-CoA desaturase-1 (SCD-1), and AMP-activated protein kinase (AMPK) activation in HepG2 cells. JSD markedly reduced palmitate-induced intracellular lipid accumulation in HepG2 cells. JSD suppressed $LXR{\alpha}$/SREBP-1c expression, and SREBP-1c mediated induction of ACC, FAS, and SCD-1. Furthermore, JSD activated AMPK, which plays a major role in the control of hepatic lipid metabolism. Taken together, it is suggested that JSD has a potential to alleviate hepatic steatosis, at least in part, by suppressing $LXR{\alpha}$/SREBP-1c mediated induction of lipogenic genes. In addtion, the anti-lipogenic potential may be associated with activation of AMPK. Therefore, the Phaseolus angularis seed could be applied as a potential therapeutics for NAFLD with additional clinical studies.

Anti-Lipogenic Effect of Functional Cereal Samples on High Sucrose Diet-Induced Non-Alcoholic Fatty Liver Disease in Mice (고당식이로 유도된 비알코올성 지방간 마우스에서 기능성 잡곡의 지질 대사 개선 효과)

  • Lee, Ko-Eun;Song, Jia-Le;Jeong, Byung-Jin;Jeong, Jong-Sung;Huh, Tae-Gon;Park, Kun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.6
    • /
    • pp.789-796
    • /
    • 2016
  • The anti-lipogenic effect of cereal samples on high sucrose diet (HSD)-induced non-alcoholic fatty liver disease (NAFLD) in mice was studied. We divided C57BL/6 mice into various groups based on 8 weeks of treatment with three types of cereal samples (HSD+WR, HSD diet containing 40% white rice; HSD+MCG, HSD diet containing 40% mixed cereal grain; HSD+AO-MCG, HSD diet containing 40% mixed antiobesity-cereal grain). After the experimental period, body weight changes, liver weights, serum lipid profiles, and hepatic fatty acid metabolism-related gene expression levels were determined. We found that HSD+WR, HSD+MCG, and HSD+AO-MCG treatments reduced body weight and liver weight, especially HSD+MCG and HSD+AO-MCG effectively reduced levels of serum triglycerides, total cholesterol, and low-density lipoprotein cholesterol. However, high density lipoprotein cholesterol levels increased compared to the control group. Furthermore, expression of hepatic lipogenic genes such as sterol regulatory element-binding protein-1c, acetyl-coenzyme A carboxylase, fatty acid synthase, stearoyl-coenzyme A desaturase-1, cluster of differentiation, and $PPAR-{\gamma}$ (peroxisome proliferator activated receptor ${\gamma}$) decreased, whereas expression of ${\beta}-oxidation$ genes such as $PPAR-{\alpha}$ and carnitine palmitoyl transferase-1 increased following HSD+MCG and HSD+AO-MCG treatment compared with levels in HSD+WR and control groups. These results suggest that the functional cereal samples, especially HSD+AO-MCG treatment, improved hepatic steatosis triggered by an HSD-induced imbalance in hepatic lipid metabolism.

Gene Expression Profiling of Acetaminophen Induced Hepatotoxicity in Mice

  • Suh, Soo-Kyung;Jung, Ki-Kyung;Jeong, Youn-Kyoung;Kim, Hyun-Ju;Lee, Woo-Sun;Koo, Ye-Mo;Kim, Tae-Gyun;Kang, Jin-Seok;Kim, Joo-Hwan;Lee, Eun-Mi;Park, Sue-Nie;Kim, Seung-Hee;Jung, Hai-Kwan
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.4
    • /
    • pp.236-243
    • /
    • 2006
  • Microarray analysis of gene expression has become a powerful approach for exploring the biological effects of drugs, particularly at the stage of toxicology and safety assessment. Acetaminophen (APAP) has been known to induce necrosis in liver, but the molecular mechanism involved has not been fully understood. In this study, we investigated gene expression changes of APAP using microarray technology. APAP was orally administered with a single dose of 50 mg/kg or 500 mg/kg into ICR mice and the animals were sacrificed at 6, 24 and 72 h of APAP administration. Serum biochemical markers for liver toxicity were measured to estimate the maximal toxic time and hepatic gene expression was assessed using high-density oligonucleotide microarrays capable of determining the expression profile of >30,000 well-substantiated mouse genes. Significant alterations in gene expression were noted in the liver of APAP-administered mice. The most notable changes in APAP-administered mice were the expression of genes involved in apoptosis, cell cycle, and calcium signaling pathway, cystein metabolism, glutatione metabolism, and MAPK pathway. The majority of the genes upregulated included insulin-like growth factor binding protein 1, heme oxygenase 1, metallothionein 1, S100 calcium binding protein, caspase 4, and P21. The upregulation of apoptosis and cell cycle-related genes were paralleled to response to APAP. Most of the affected gene expressions were returned to control levels after 72 hr. In conclusion, we identified potential hepatotoxicity makers, and these expressions profiling lead to a better understanding of the molecular basis of APAP-induced hapatotoxicity.

Effects of Kisspeptin-10 on Lipid Metabolism in Cultured Chicken Hepatocytes

  • Wu, J.;Fu, W.;Huang, Y.;Ni, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.9
    • /
    • pp.1229-1236
    • /
    • 2012
  • Our previous studies showed that kisspeptin-10 (Kp-10) injected in vivo can markedly increase lipid anabolism in liver of quails. In order to investigate the direct effect of Kp-10 on lipid metabolism of hepatocytes in birds, cells were separated from embryos livers and cultured in vitro with 0, 100 and 1,000 nM Kp-10, respectively. The results showed that after 24 h treatment, cells viability was not affected by 100 nM Kp-10, but showed a mild decrease with 1,000 nM Kp-10 compared to the control cells. Based on the results of the cell viability, 100 nM dosage of Kp-10 was selected for the further study and analysis. Compared with control cells, total cholesterol (Tch) contents in 100 nM treated cells were increased by 51.23%, but did not reach statistical significance, while the level of triglyceride (TG), high density of lipoprotein-cholesterol (HDL-C) and low density of lipoprotein-cholesterol (LDL-C) were significantly increased. Real-time PCR results showed that ApoVLDL-II mRNA expression had a tendency to increase, genes including sterol regulatory element-binding protein-1 (SREBP-1), acetyl coenzyme A carboxylase ${\alpha}$ ($ACC{\alpha}$), carnitine palmitoyltransferase 1 (CPT1), 3-hydroxyl-3-methylglutaryl-coenzyme A reductases (HMGCR) and stearyl coenzyme A dehydrogenase-1 (SCD1) mRNA in hepatocytes were significantly down-regulated by 100 nM Kp-10. However, contrary to its gene expression, SREBP-1 protein expression was significantly up-regulated by 100 nM Kp-10. Some of the significant correlations in mRNA expression were found between genes encoding hepatic factors or enzymes involved in lipid metabolism in liver of birds. These results indicate that Kp-10 stimulates lipid synthesis directly in primary cultured hepatocytes of chickens.

The effects of black garlic (Allium satvium) extracts on lipid metabolism in rats fed a high fat diet

  • Ha, Ae Wha;Ying, Tian;Kim, Woo Kyoung
    • Nutrition Research and Practice
    • /
    • v.9 no.1
    • /
    • pp.30-36
    • /
    • 2015
  • BACKGROUD/OBEJECTIVES: The mechanism of how black garlic effects lipid metabolism remains unsolved. Therefore, the objectives of this study were to determine the effects of black garlic on lipid profiles and the expression of related genes in rats fed a high fat diet. MATERIALS/METHODS: Thirty-two male Sqrague-Dawley rats aged 4 weeks were randomly divided into four groups (n=8) and fed the following diets for 5 weeks: normal food diet, (NF); a high-fat diet (HF); and a high-fat diet + 0.5% or 1.5% black garlic extract (HFBG0.5 or HFBG1.5). Body weights and blood biochemical parameters, including lipid profiles, and expressions of genes related to lipid metabolism were determined. RESULTS: Significant differences were observed in the final weights between the HFBG1.5 and HF groups. All blood biochemical parameters measured in the HFBG1.5 group showed significantly lower values than those in the HF group. Significant improvements of the plasama lipid profiles as well as fecal excretions of total lipids and triglyceride (TG) were also observed in the HFBG1.5 group, when compared to the HF diet group. There were significant differences in the levels of mRNA of sterol regulatory element binding protein-1c (SREBP-1c), acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), and glucose-6-phosphate dehydrogenase (G6PDH) in the HFBG1.5 group compared to the HF group. In addition, the hepatic expression of (HMG-CoA) reductase and Acyl-CoA cholesterol acyltransferase (ACAT) mRNA was also significantly lower than the HF group. CONCLUSIONS: Consumption of black garlic extract lowers SREBP-1C mRNA expression, which causes downregulation of lipid and cholestrol metahbolism. As a result, the blood levels of total lipids, TG, and cholesterol were decreased.