• Title/Summary/Keyword: Hemodynamic Function

Search Result 145, Processing Time 0.026 seconds

Pathogenesis and Prevention of Intraventricular Hemorrhage in Preterm Infants

  • Pei-Chen Tsao
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.3
    • /
    • pp.228-238
    • /
    • 2023
  • Intraventricular hemorrhage (IVH) is a serious concern for preterm infants and can predispose such infants to brain injury and poor neurodevelopmental outcomes. IVH is particularly common in preterm infants. Although advances in obstetric management and neonatal care have led to a lower mortality rate for preterm infants with IVH, the IVH-related morbidity rate in this population remains high. Therefore, the present review investigated the pathophysiology of IVH and the evidence related to interventions for prevention. The analysis of the pathophysiology of IVH was conducted with a focus on the factors associated with cerebral hemodynamics, vulnerabilities in the structure of cerebral vessels, and host or genetic predisposing factors. The findings presented in the literature indicate that fluctuations in cerebral blood flow, the presence of hemodynamic significant patent ductus arteriosus, arterial carbon dioxide tension, and impaired cerebral venous drainage; a vulnerable or fragile capillary network; and a genetic variant associated with a mechanism underlying IVH development may lead to preterm infants developing IVH. Therefore, strategies focused on antenatal management, such as routine corticosteroid administration and magnesium sulfate use; perinatal management, such as maternal transfer to a specialized center; and postnatal management, including pharmacological agent administration and circulatory management involving prevention of extreme blood pressure, hemodynamic significant patent ductus arteriosus management, and optimization of cardiac function, can lower the likelihood of IVH development in preterm infants. Incorporating neuroprotective care bundles into routine care for such infants may also reduce the likelihood of IVH development. The findings regarding the pathogenesis of IVH further indicate that cerebrovascular status and systemic hemodynamic changes must be analyzed and monitored in preterm infants and that individualized management strategies must be developed with consideration of the risk factors for and physiological status of each preterm infant.

Effect of Renal Denervation on Renal Action of Methoxyverapamil in Dogs (Methoxyverapamil의 신장작용에 미치는 신 신경제거의 영향)

  • 고석태;이수정;유강준
    • Biomolecules & Therapeutics
    • /
    • v.2 no.3
    • /
    • pp.229-235
    • /
    • 1994
  • In dogs, renal denervation did not affect the diuretic action accompanied with renal hemodynamic chanties and inhibition of electrolytes reabsorption rates in renal tubules by methoxyverapamil infused into the vein or into a renal artery, while renal denervation blocked the antidiuretic action due to the decreased free water and osmolar clearances along with the reduced sodium amounts excreted in urine by methoxyverpamil infused into the carotid artery. These experimental results suggest that methoxyverapamil may cause diuresis by direct action in kidney but the antidiuretic action through central function mediated by renal nerves.

  • PDF

Intra-Aortic Balloon Pump in the Left Heart Failure (좌심실 부전증에서의 IABP 치험 - 5예 보고-)

  • 소동문
    • Journal of Chest Surgery
    • /
    • v.21 no.1
    • /
    • pp.116-120
    • /
    • 1988
  • From July 1986 to June 1987, five patients were underwent IABP [intra aortic balloon pulsation] because of sever left heart failure in spite of maximum medication. These patients were reviewed as prophylactic IABP [1 patient], During operation [3 patients] and postoperative IABP [1 patients]. All patients were showed stable hemodynamic status with improved LV function during and after IABP. there was no IABP related complication or mortality. Advanced disease needs more effective methods of mechanical circulatory assistance and heart replacement.

  • PDF

Protective Roles of Ginseng Saponin in Cardiac Ischemia and Reperfusion Injury

  • Kim, Jong-Hoon
    • Journal of Ginseng Research
    • /
    • v.33 no.4
    • /
    • pp.283-293
    • /
    • 2009
  • Ginsenosides, one of the most well-known traditional herbal medicines, are used frequently in Korea for the treatment of cardiovascular symptoms. The effects of ginseng saponin on ischemia-induced isolated rat heart were investigated through analyses of hemodynamic changes including perfusion pressure, aortic flow, coronary flow, and cardiac output. Isolated rat hearts were perfused and then subjected to 30 min of global ischemia followed by 60 min of reperfusion with modified Kreb's Henseleit solution. Myocardial contractile function was continuously recorded. Ginseng saponin administered before inducing ischemia significantly prevented decreases in perfusion pressure, aortic flow, coronary flow, and cardiac output. The ginseng saponin administered group significantly recovered all of the hemodynamic parameters, except heart rate, after ischemia-reperfusion (I/R) compared with ischemia control. The intracellular calcium ($[Ca^{2+}]_i$) content in rat neonatal cardiomyocytes was quantitatively determined. Administration of ginseng saponin significantly prevented $[Ca^{2+}]_i$ increase that had been induced by simulated I/R in vitro (p<0.01) in a dose-dependent manner, suggesting that the cardioprotection of ginseng saponin is mediated by the inhibition of $[Ca^{2+}]_i$ increase. Overall, we found that the administration of ginseng saponin has cardioprotective effects on the isolated rat heart after I/R injury. These results indicate that ginseng saponin has distinct cardioprotective effects in an I/R-induced rat heart.

Critical Care Management Following Lung Transplantation

  • Jeon, Kyeongman
    • Journal of Chest Surgery
    • /
    • v.55 no.4
    • /
    • pp.325-331
    • /
    • 2022
  • Postoperative critical care management for lung transplant recipients in the intensive care unit (ICU) has expanded in recent years due to its complexity and impact on clinical outcomes. The practical aspects of post-transplant critical care management, especially regarding ventilation and hemodynamic management during the early postoperative period in the ICU, are discussed in this brief review. Monitoring in the ICU provides information on the patient's clinical status, diagnostic assessment of complications, and future management plans since lung transplantation involves unique pathophysiological conditions and risk factors for complications. After lung transplantation, the grafts should be appropriately ventilated with lung protective strategies to prevent ventilator-induced lung injury, as well as to promote graft function and maintain adequate gas exchange. Hypotension and varying degrees of pulmonary edema are common in the immediate postoperative lung transplantation setting. Ventricular dysfunction in lung transplant recipients should also be considered. Therefore, adequate volume and hemodynamic management with vasoactive agents based on their physiological effects and patient response are critical in the early postoperative lung transplantation period. Integrated management provided by a professional multidisciplinary team is essential for the critical care management of lung transplant recipients in the ICU.

Nonlinearity in the Somatosensory Cortex Response to Vibrotactile Stimulator in fMRI (기능성 자기공명영상에서 진동자극에 대한 감각피질의 비선형성)

  • Lee, Hyun-Sook
    • Progress in Medical Physics
    • /
    • v.17 no.3
    • /
    • pp.159-166
    • /
    • 2006
  • The nonlinearity of hemodynamic response in the somatosensory cortex was investigated with vibrotactile stimulation. The stimuli consisted of a train of 25 Hz, each tasting five different duration periods, 2 s, 4 s, 8 s 12 s, or 16 s with 20 sec periods of no vibration in a pseudo-random order. In order to understand the linearity on the change of stimulus duration for somatosensory cortex, two different tests- checking the linearity of system and finding the impulse response function from gamma-variate function were applied to analyze the hemodynamic response functions. They have produced nearly same results. The BOLD response in the somatosensory cortex Is nonlinear for stimuli of less than 8 seconds, but nearly linear for stimuli greater than 8 seconds. The amplitude, area, TTP, and FWHM as functions of the stimulus duration were calculated and showed a significant downward trend with Increasing stimulus duration for the amplitude and the area. It supports the ranges of nonlinearity are less than 8 seconds.

  • PDF

Pulmonary stenosis and pulmonary regurgitation: both ends of the spectrum in residual hemodynamic impairment after tetralogy of Fallot repair

  • Yoo, Byung Won;Park, Han Ki
    • Clinical and Experimental Pediatrics
    • /
    • v.56 no.6
    • /
    • pp.235-241
    • /
    • 2013
  • Repair of tetralogy of Fallot (TOF) has shown excellent outcomes. However it leaves varying degrees of residual hemodynamic impairment, with severe pulmonary stenosis (PS) and free pulmonary regurgitation (PR) at both ends of the spectrum. Since the 1980s, studies evaluating late outcomes after TOF repair revealed the adverse impacts of residual chronic PR on RV volume and function; thus, a turnaround of operational strategies has occurred from aggressive RV outflow tract (RVOT) reconstruction for complete relief of RVOT obstruction to conservative RVOT reconstruction for limiting PR. This transformation has raised the question of how much residual PS after conservative RVOT reconstruction is acceptable. Besides, as pulmonary valve replacement (PVR) increases in patients with RV deterioration from residual PR, there is concern regarding when it should be performed. Regarding residual PS, several studies revealed that PS in addition to PR was associated with less PR and a small RV volume. This suggests that PS combined with PR makes RV diastolic property to protect against dilatation through RV hypertrophy and supports conservative RVOT enlargement despite residual PS. Also, several studies have revealed the pre-PVR threshold of RV parameters for the normalization of RV volume and function after PVR, and based on these results, the indications for PVR have been revised. Although there is no established strategy, better understanding of RV mechanics, development of new surgical and interventional techniques, and evidence for the effect of PVR on RV reverse remodeling and its late outcome will aid us to optimize the management of TOF.

Diuretic Action of Vasopressin (바소프레신의 이뇨작용)

  • Go, Seok-Tae;Yun, Jae-Gyeong;Yu, Gang-Jun
    • YAKHAK HOEJI
    • /
    • v.40 no.4
    • /
    • pp.468-477
    • /
    • 1996
  • Vasopressin which is an antidiuretic hormone in human body produced the diuretic action in dog. This study was investigated in order to certify the diuretic action and to search out the mechanism of the action on the vasopressin. Vasopressin, when given in a dose of 10.0mU/kg, bolus+1.0mU/kg/min intravenously, exhibited the increase of urine flow(Vol), renal plasma flow(RPF), osmolar clearance (Cosm) and amounts of sodium and potassium excreted in urine ($E_{Na},\;E_K$), the decrease of reabsorption rate of sodium and potassium in renal tubules ($R_{Na},\;R_K$), and then elevated the mean arterial pressure(MAP). Vasopressin given in a increased dose to 30.0mU/kg, bolus+1.0mU/kg/min intravenously elicited the same aspect with that exhibited by a small dose in changes of Vol. and all renal function and potentiated the change rates, whereas this time MAP did not change at all when compared with control value. Vasopressin, when administered into a renal artery, did not induce the changes of Vol and all renal function in experimental (administered) kidney, but increased slightly the Vol, glomerular filtration rate(GFR), $E_{Na},\;and\;E_K$ expected the no change of $R_{Na}\;and\;R_K$ in the control (not administered) kidney. Vasopressin, when infused into carotid artery, showed the increase of Vol. GFR, $E_{Na},\;and\;E_K$ and no change of $R_{Na}\;and\;R_K$ in a dose of 1/5 of intravenous dose. Diuretic action of vasopressin administered into carotid artery was not influenced by renal denervation. Above results suggest that vasopressin produced diuretic action by hemodynamic changes in dogs. These hemodynamic changes may be mediated by central endogenous substances not associated with renal nerve.

  • PDF

Hemodynamic Analysis of Pig's Left Common Coronary Artery (I) (좌주간부 관상동맥에 관한 혈류역학적 분석 (I))

  • Park, Jung-Su;Chang, Ju-Hee;Moon, Su-Yeon;Shin, Se-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1923-1929
    • /
    • 2003
  • The present study investigated the microcirculation of blood in the left common artery (LCCA). In order to develop a mathematical model for microcirculation in LCCA, the present study adopted preexisted set of measured morphological data on anatomy, mechanical properties of the coronary vessels, viscosity of blood, the basic laws of physics, and the appropriate boundary conditions. In this study, the statistical distribution of blood pressure, blood flow, and blood volume in the LCCA were determined based on the anatomical branching pattern of the coronary arterial tree and the statistical data of blood vessel dimensions. Our calculations were in good agreement with the previous studies. The present results showed that the mean longitudinal pressure drop profile was function of the vessel order numbers. It was found that the normalized pressure drop was a logarithmic function of the compliance.

  • PDF

Effect of Vasoactive Intestinal Peptide on Renal Function in Rats (Vasoactive Intestinal Peptide(VIP)의 백서신장기능(白鼠腎臟機能)에 미치는 영향(影響))

  • Kim, Suhn-Hui;Cho, Kyung-W
    • The Korean Journal of Physiology
    • /
    • v.16 no.2
    • /
    • pp.159-163
    • /
    • 1982
  • Vasoactive intestinal peptide (VIP) found in duodenal mucosa originally has been suggested as a neurotransmitter. Its localization, however, now known, is not limited to the gastrointestinal tract, but scattered at many different kinds of tissues, smooth muscles, endocrine gland and exocrine gland as well as central and peripheral neural tissues. To investigate the effect of VIP on renal function, an experiment has been done in anesthetized male rats. The results obtained were: 1) Urinary output and creatinine clearance decreased significantly during the period of infusion of VIP, 2.0ug/rat/7minutes. 2) Urinary excretion of sodium, potassium and chloride decreased but without significance by infusion of VIP. 3) Blood pressure, systolic and diastolic, decreased by VIP administered intravenously in the period of infusion. 4) Changes of urinary output, sodium and chloride excretion was correlated with changes of creatinine clearance. The above data suggest that VIP administered intravenously can suppress the renal hemodynamics indirectly, and also decrease electrolyte excretion through its renal hemodynamic change.

  • PDF