• Title/Summary/Keyword: Helix-hinge-helix motif

Search Result 4, Processing Time 0.028 seconds

Analysis of the solution structure of the human antibiotic peptide dermcidin and its interaction with phospholipid vesicles

  • Jung, Hyun-Ho;Yang, Sung-Tae;Sim, Ji-Yeong;Lee, Seung-Kyu;Lee, Ju-Yeon;Kim, Ha-Hyung;Shin, Song-Yub;Kim, Jae-Il
    • BMB Reports
    • /
    • v.43 no.5
    • /
    • pp.362-368
    • /
    • 2010
  • Dermcidin is a human antibiotic peptide that is secreted by the sweat glands and has no homology to other known antimicrobial peptides. As an initial step toward understanding dermcidin's mode of action at bacterial membranes, we used homonuclear and heteronuclear NMR to determine the conformation of the peptide in 50% trifluoroethanol solution. We found that dermcidin adopts a flexible amphipathic $\alpha$-helical structure with a helix-hinge-helix motif, which is a common molecular fold among antimicrobial peptides. Spin-down assays of dermcidin and several related peptides revealed that the affinity with which dermcidin binds to bacterial-mimetic membranes is primarily dependent on its amphipathic $\alpha$-helical structure and its length (>30 residues); its negative net charge and acidic pI have little effect on binding. These findings suggest that the mode of action of dermcidin is similar to that of other membrane-targeting antimicrobial peptides, though the details of its antimicrobial action remain to be determined.

Structure-Activity Relationships of Peptide Antibiotics with Improved Bacterial Cell Selectivity of Pseudin

  • Lee, Yeongjoon;Jeon, Dasom;Kim, Jin-Kyoung;Kim, Yangmee
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.21 no.3
    • /
    • pp.78-84
    • /
    • 2017
  • Pseudin is a naturally occurring 24 amino-acid-residue antimicrobial peptide derived from the skin of paradoxical frog Pseud's paradoxa. It shows potency against the bacteria and antibiotic-resistant bacteria strain, but has high cytotoxicity against mammalian cell. In our previous study, substitution of $Pro^{11}$ for Gly (Ps-P) increased bacterial cell selectivity but decreased the antibacterial activity of pseudin. In this study, we designed pseudin analogue, Ps-4K-P with increased cationicity up to +7 in Ps-P by substituting Glu14, Gln10, Gln24, and Leu18 with Lys. Ps-4K-P showed improved potent antibacterial activity with high bacterial cell selectivity. We determined the tertiary structure of Ps-4K-P in the presence of DPC micelles by NMR spectroscopy and it has a hinge structure at $Pro^{11}$ followed by three turn helices from $Pro^{11}$ to $Val^{23}$ at the C-terminus. Amphipathicity with increased cationicity as well as helix-hinge-helix structural motif provided by introduction of a Pro at position $Gly^{11}$ are the crucial factors which confer antibacterial activity with bacterial cell selectivity to Ps-4K-P.

Cyclic AMP Receptor Protein Adopts the Highly Stable Conformation at Millimolar cAMP Concentration (높은 cAMP 농도에서 cAMP 수용성 단백질의 열 안정화)

  • Kang, Jong-Baek;Choi, Young
    • Journal of Life Science
    • /
    • v.13 no.5
    • /
    • pp.751-755
    • /
    • 2003
  • Cyclic AMP receptor proteins(CRP) activate many genes in Escherichia coli by binding of cAMP with not fully known mechanism. CRP existed as apo-CRP in the absence of cAMP, $CRP;(cAMP)_2$$_2$ at low(micromolar) cAMP concentration, or $CRP;(cAMP)_4$ at high(millimolar) concentration of cAMP. This study is designed to measure the thermal stability of S83G CRP, which substituted glycine for serine at amino acid 83 position, with CD spectrapolarimeter at 222nm by the constant elevation of temperature from $20^{\circ]C\; to\; 90^{\circ}C\; at\; 1^{\circ}C/min$. The non-linear regression analysis showed that melting temperatures were 68.4, 72.0, and $82.3^{\circ}C$ for no cAMP, 0.1mM cAMP, and 5mM cAMP, respectively. Result showed the strong thermal stability of CRP by binding of additional cAMP molecules to region between the hinge region and helix-turn-helix(HTH) motif at 5mM cAMP concentration.

Purification and Characterization of Repressor of Temperate S. aureus Phage Φ11

  • Das, Malabika;Ganguly, Tridib;Chattoraj, Partho;Chanda, Palas Kumar;Bandhu, Amitava;Lee, Chia Yen;Sau, Subrata
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.740-748
    • /
    • 2007
  • To gain insight into the structure and function of repressor proteins of bacteriophages of gram-positive bacteria, repressor of temperate Staphylococcus aureus phage ${\phi}11$ was undertaken as a model system here and purified as an N-terminal histidine-tagged variant (His-CI) by affinity chromatography. A ~19 kDa protein copurified with intact His-CI (~ 30 kDa) at low level was resulted most possibly due to partial cleavage at its Ala-Gly site. At ~10 nM and higher concentrations, His-CI forms significant amount of dimers in solution. There are two repressor binding sites in ${\phi}11$ cI-cro intergenic region and binding to two sites occurs possibly by a cooperative manner. Two sites dissected by HincII digestion were designated operators $O_L$ and $O_R$, respectively. Equilibrium binding studies indicate that His-CI binds to $O_R$ with a little more strongly than $O_L$ and binding species is probably dimeric in nature. Interestingly His-CI binding affinity reduces drastically at elevated temperatures ($32-42^{\circ}C$). Both $O_L$ and $O_R$ harbor a nearly identical inverted repeat and studies show that ${\phi}11$ repressor binds to each repeat efficiently. Additional analyses indicate that ${\phi}11$ repressor, like $\lambda$ repressor, harbors an N-terminal domain and a C-terminal domain which are separated by a hinge region. Secondary structure of ${\phi}11$ CI even nearly resembles to that of $\lambda$ phage repressor though they differ at sequence level. The putative N-terminal HTH (helix-turn-helix) motif of ${\phi}11$ repressor belongs to the HTH -XRE-family of proteins and shows significant identity to the HTH motifs of some proteins of evolutionary distant organisms but not to HTH motifs of most S. aureus phage repressors.