References
- Aggarwal, A. K., Rodgers, D. W., Drottar, M., Ptashne, M. and Harrison, S. C. (1988) Recognition of a DNA operator by the repressor of phage 434: a view at high resolution. Science 242, 899-907. https://doi.org/10.1126/science.3187531
- Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. and Struhl, K. (ed) (1998) In Current Protocols in Molecular Biology, Vol. 2, pp. 10.0.1-10.22.24 and pp. 12.0.1-12.2.11 copyright by John Wiley & Sons, Inc., USA.
- Ballivet, M. and Eisen, H. (1978) Purification and properties of phage P22 c2 repressor. Eur. J. Biochem. 82, 175-80. https://doi.org/10.1111/j.1432-1033.1978.tb12009.x
- Beamer, L. J., Pabo, C. and Refined, O. (1992) 1.8 A crystal structure of the lambda repressor-operator complex, J. Mol. Biol. 227, 177-196. https://doi.org/10.1016/0022-2836(92)90690-L
- Carroll, D., Kehoe, M., Cavanagh, A. D. and Coleman, D. C. (1995) Novel organization of the site-specific integration and excision recombination functions of the Staphylococcus aureus serotype F virulence-converting phages phi 13 and phi 42. Mol. Microbiol. 16, 877-893. https://doi.org/10.1111/j.1365-2958.1995.tb02315.x
- Christensen, A. C. (2001) Bacteriophage lambda-based expression vectors. Mol. Biotechnol. 17, 219-224. https://doi.org/10.1385/MB:17:3:219
- Daniels, D. L., Schroeder, J. I., Szybalski, W., Sanger, F., Coulson, A. R , Hong, G. F., Hill, D. F., Petersen, G. F. and Blattner, F. R. (1983) Lysogenic induvtion in Lambda II. P. pp. 123-144, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., USA.
- Ganguly, T., Chanda, P. K., Bandhu, A., Chattoraj, P., Das, M. and Sau, S. (2006) Effects of physical, ionic, and structural factors on the binding of repressor of mycobacteriophage L1 to its cognate operator DNA. Protein Peptide Lett. 13, 793-798. https://doi.org/10.2174/092986606777841262
- Ganguly, T., Chattoraj, P., Das, M., Chanda, P. K., Mandal, N. C. and Sau, S. (2004) A point mutation at the C-terminal half of the repressor of temperate mycobacteriophage L1 affects its binding to the operator DNA, J. Biochem. Mol. Biol. 37, 709-714. https://doi.org/10.5483/BMBRep.2004.37.6.709
- Iandolo, J. J., Worrell, V., Groicher, K. H., Qian, Y., Tian, R., Kenton, S., Ji Dorman, A. H., Lin, S., Loh, P., Qi, S., Zhu, H. and Roe, B. A. (2002) Comparative analysis of the genomes of the temperate bacteriophages phi 11, phi 12 and phi 13 of Staphylococcus aureus 8325. Gene 289, 109-118. https://doi.org/10.1016/S0378-1119(02)00481-X
- Kaneko, J., Kimura, T., Narita, S., Tomita, T. and Kamio, Y. (1998) Complete nucleotide sequence and molecular characterization of the temperate staphylococcal bacteriophage phiPVL carrying Panton-Valentine leukocidin genes, Gene 215, 57-67. https://doi.org/10.1016/S0378-1119(98)00278-9
- Koblan, K. S. and Ackers, G. K. (1991) Energetics of subunit dimerization in bacteriophage lambda cI repressor: linkage to protons, temperature, and KCl, Biochemistry 30, 7817-7821. https://doi.org/10.1021/bi00245a022
- Koudelka, A. P., Hufnagel, L. A. and Koudelka, G. B. (2004) Purification and characterization of the repressor of the shiga toxin-encoding bacteriophage 933W: DNA binding, gene regulation, and autocleavage. J. Bacteriol. 186, 7659-7669. https://doi.org/10.1128/JB.186.22.7659-7669.2004
- Kwan, T., Liu, J., DuBow, M., Gros, P. and Pelletier, J. (2005) The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. Proc. Natl. Acad. Sci. USA 102, 5174-5179. https://doi.org/10.1073/pnas.0501140102
- Lee, C. Y. and Iandolo J. J. (1986) Integration of staphylococcal phage L54a occurs by site-specific recombination: structural analysis of the attachment sites Proc. Natl. Acad. Sci. USA 83, 5474 -5478.
- Lee, C. Y. and Iandolo J. J. (1988) Structural analysis of staphylococcal bacteriophage phi 11 attachment sites. J. Bacteriol. 170, 2409-2411. https://doi.org/10.1128/jb.170.5.2409-2411.1988
- Lee, C. Y. and Buranen, S. L. (1989) Extent of the DNA sequence required in integration of staphylococcal bacteriophage L54a. J. Bacteriol. 171, 1652-1657. https://doi.org/10.1128/jb.171.3.1652-1657.1989
- Little, J. W. (1984) Autodigestion of lexA and phage lambda repressors. Proc. Natl. Acad. Sci. USA 81, 1375-1379. https://doi.org/10.1073/pnas.81.5.1375
- Mandal, N. C. and Leib, M. (1976) Heat-sensitive DNA-binding activity of the cI product of bacteriophage lambda. Molec. Gen. Genet. 146, 299-302. https://doi.org/10.1007/BF00701254
- Martin, M. C., Alonso, J. C. Suarez, J. E. and Alvarez, M. A. (2000) Generation of food-grade recombinant lactic acid bacterium strains by site-specific recombination. Appl. Environ. Microbiol. 66, 2599-2604. https://doi.org/10.1128/AEM.66.6.2599-2604.2000
- Narita, S., Kaneko, J., Chiba, J., Piemont, Y., Jarraud, S., Etienne, J. and Kamio, Y. (2001) Phage conversion of Panton-Valentine leukocidin in Staphylococcus aureus: molecular analysis of a PVL-converting phage, phiSLT. Gene 268, 195-206. https://doi.org/10.1016/S0378-1119(01)00390-0
- Nohmi, T. J., Battista, R., Dodson, L. A. and Walker, G. C. (1988) RecA-mediated cleavage activates UmuD for mutagenesis: mechanistic relationship between transcriptional derepression and posttranslational activation. Proc. Natl. Acad. Sci. USA 85, 1816-1820. https://doi.org/10.1073/pnas.85.6.1816
- Oppenheim, A. B., Kobiler, Stavans, O. J., Court, D. L. and Adhya, S. (2005) Switches in bacteriophage lambda development. Annu. Rev. Genet. 39, 409-429. https://doi.org/10.1146/annurev.genet.39.073003.113656
- Ptashne, M. (1986) Protein-DNA interactions and gene control in A genetic switch. pp. 33-47. Blackwell Press, PaloAlto, Calif.
- Sambrook, J. and Russell, D. W. (2001) In Molecular Cloning: A Laboratory Manual. 3rd ed., Cold Spring Harbor Laboratory Press, CSH, New York, USA.
- Shaner, S. L. and Gaissarian, E. S. (1996) Binding of Escherichia coli LexA repressor to the RecA operator. J. Mol. Recognit. 9, 468-473. https://doi.org/10.1002/(SICI)1099-1352(199634/12)9:5/6<468::AID-JMR284>3.0.CO;2-W
- Sumby, P. and Waldor, M. K. (2003) Transcription of the toxin genes present within the Staphylococcal phage phiSa3ms is intimately linked with the phage's life cycle. J. Bacteriol. 185, 6841-6851. https://doi.org/10.1128/JB.185.23.6841-6851.2003
- Vershon, A. K., Liao, S. M., McClure, W. R. and Sauer, R. T. (1987) Bacteriophage P22 Mnt repressor. DNA binding and effects on transcription in vitro. J. Mol. Biol. 195, 311-322. https://doi.org/10.1016/0022-2836(87)90652-8
- Whitson, P. A., Olson, J. S. and Matthews, K. S. (1986) Thermodynamic analysis of the lactose repressor-operator DNA interaction. Biochemistry 25, 3852-3858. https://doi.org/10.1021/bi00361a017
- Yamaguchi, T., Hayashi, T., Takami, H., Nakasone, K., Ohnishi, M., Nakayama, K., Yamada, S., Komatsuzawa, H. and Sugai, M. (2000) Phage conversion of exfoliative toxin A production in Staphylococcus aureus. Mol. Microbiol. 38, 694-705. https://doi.org/10.1046/j.1365-2958.2000.02169.x
- Ye, Z. H. and Lee, C. Y. (1989) Nucleotide sequence and genetic characterization of staphylococcal bacteriophage L54a int and xis genes. J. Bacteriol. 171, 4146-4153. https://doi.org/10.1128/jb.171.8.4146-4153.1989
Cited by
- Antagonistic effects Na+ and Mg2+ on the structure, function, and stability of mycobacteriophage L1 repressor vol.42, pp.5, 2009, https://doi.org/10.5483/BMBRep.2009.42.5.293
- Potential of Bacteriophages and Their Lysins in the Treatment of MRSA vol.25, pp.6, 2011, https://doi.org/10.2165/11595610-000000000-00000
- Betanodavirus non-structural protein B2: A novel necrotic death factor that induces mitochondria-mediated cell death in fish cells vol.385, pp.1, 2009, https://doi.org/10.1016/j.virol.2008.11.036
- Genomic characterization provides new insight into Salmonella phage diversity vol.14, pp.1, 2013, https://doi.org/10.1186/1471-2164-14-481
- Physicochemical properties and distinct DNA binding capacity of the repressor of temperate Staphylococcus aureus phage φ11 vol.276, pp.7, 2009, https://doi.org/10.1111/j.1742-4658.2009.06924.x
- Moderately thermostable phage Φ11 Cro repressor has novel DNA-binding capacity and physicochemical properties vol.42, pp.3, 2009, https://doi.org/10.5483/BMBRep.2009.42.3.160
- Stabilization of the primary sigma factor of Staphylococcus aureus by core RNA polymerase vol.43, pp.3, 2010, https://doi.org/10.5483/BMBRep.2010.43.3.176
- A novel site-specific recombination system derived from bacteriophage ϕMR11 vol.368, pp.2, 2008, https://doi.org/10.1016/j.bbrc.2008.01.045
- Betanodavirus non-structural protein B1: A novel anti-necrotic death factor that modulates cell death in early replication cycle in fish cells vol.385, pp.2, 2009, https://doi.org/10.1016/j.virol.2008.11.048