DOI QR코드

DOI QR Code

Purification and Characterization of Repressor of Temperate S. aureus Phage Φ11

  • Published : 2007.09.30

Abstract

To gain insight into the structure and function of repressor proteins of bacteriophages of gram-positive bacteria, repressor of temperate Staphylococcus aureus phage ${\phi}11$ was undertaken as a model system here and purified as an N-terminal histidine-tagged variant (His-CI) by affinity chromatography. A ~19 kDa protein copurified with intact His-CI (~ 30 kDa) at low level was resulted most possibly due to partial cleavage at its Ala-Gly site. At ~10 nM and higher concentrations, His-CI forms significant amount of dimers in solution. There are two repressor binding sites in ${\phi}11$ cI-cro intergenic region and binding to two sites occurs possibly by a cooperative manner. Two sites dissected by HincII digestion were designated operators $O_L$ and $O_R$, respectively. Equilibrium binding studies indicate that His-CI binds to $O_R$ with a little more strongly than $O_L$ and binding species is probably dimeric in nature. Interestingly His-CI binding affinity reduces drastically at elevated temperatures ($32-42^{\circ}C$). Both $O_L$ and $O_R$ harbor a nearly identical inverted repeat and studies show that ${\phi}11$ repressor binds to each repeat efficiently. Additional analyses indicate that ${\phi}11$ repressor, like $\lambda$ repressor, harbors an N-terminal domain and a C-terminal domain which are separated by a hinge region. Secondary structure of ${\phi}11$ CI even nearly resembles to that of $\lambda$ phage repressor though they differ at sequence level. The putative N-terminal HTH (helix-turn-helix) motif of ${\phi}11$ repressor belongs to the HTH -XRE-family of proteins and shows significant identity to the HTH motifs of some proteins of evolutionary distant organisms but not to HTH motifs of most S. aureus phage repressors.

Keywords

References

  1. Aggarwal, A. K., Rodgers, D. W., Drottar, M., Ptashne, M. and Harrison, S. C. (1988) Recognition of a DNA operator by the repressor of phage 434: a view at high resolution. Science 242, 899-907. https://doi.org/10.1126/science.3187531
  2. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. and Struhl, K. (ed) (1998) In Current Protocols in Molecular Biology, Vol. 2, pp. 10.0.1-10.22.24 and pp. 12.0.1-12.2.11 copyright by John Wiley & Sons, Inc., USA.
  3. Ballivet, M. and Eisen, H. (1978) Purification and properties of phage P22 c2 repressor. Eur. J. Biochem. 82, 175-80. https://doi.org/10.1111/j.1432-1033.1978.tb12009.x
  4. Beamer, L. J., Pabo, C. and Refined, O. (1992) 1.8 A crystal structure of the lambda repressor-operator complex, J. Mol. Biol. 227, 177-196. https://doi.org/10.1016/0022-2836(92)90690-L
  5. Carroll, D., Kehoe, M., Cavanagh, A. D. and Coleman, D. C. (1995) Novel organization of the site-specific integration and excision recombination functions of the Staphylococcus aureus serotype F virulence-converting phages phi 13 and phi 42. Mol. Microbiol. 16, 877-893. https://doi.org/10.1111/j.1365-2958.1995.tb02315.x
  6. Christensen, A. C. (2001) Bacteriophage lambda-based expression vectors. Mol. Biotechnol. 17, 219-224. https://doi.org/10.1385/MB:17:3:219
  7. Daniels, D. L., Schroeder, J. I., Szybalski, W., Sanger, F., Coulson, A. R , Hong, G. F., Hill, D. F., Petersen, G. F. and Blattner, F. R. (1983) Lysogenic induvtion in Lambda II. P. pp. 123-144, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., USA.
  8. Ganguly, T., Chanda, P. K., Bandhu, A., Chattoraj, P., Das, M. and Sau, S. (2006) Effects of physical, ionic, and structural factors on the binding of repressor of mycobacteriophage L1 to its cognate operator DNA. Protein Peptide Lett. 13, 793-798. https://doi.org/10.2174/092986606777841262
  9. Ganguly, T., Chattoraj, P., Das, M., Chanda, P. K., Mandal, N. C. and Sau, S. (2004) A point mutation at the C-terminal half of the repressor of temperate mycobacteriophage L1 affects its binding to the operator DNA, J. Biochem. Mol. Biol. 37, 709-714. https://doi.org/10.5483/BMBRep.2004.37.6.709
  10. Iandolo, J. J., Worrell, V., Groicher, K. H., Qian, Y., Tian, R., Kenton, S., Ji Dorman, A. H., Lin, S., Loh, P., Qi, S., Zhu, H. and Roe, B. A. (2002) Comparative analysis of the genomes of the temperate bacteriophages phi 11, phi 12 and phi 13 of Staphylococcus aureus 8325. Gene 289, 109-118. https://doi.org/10.1016/S0378-1119(02)00481-X
  11. Kaneko, J., Kimura, T., Narita, S., Tomita, T. and Kamio, Y. (1998) Complete nucleotide sequence and molecular characterization of the temperate staphylococcal bacteriophage phiPVL carrying Panton-Valentine leukocidin genes, Gene 215, 57-67. https://doi.org/10.1016/S0378-1119(98)00278-9
  12. Koblan, K. S. and Ackers, G. K. (1991) Energetics of subunit dimerization in bacteriophage lambda cI repressor: linkage to protons, temperature, and KCl, Biochemistry 30, 7817-7821. https://doi.org/10.1021/bi00245a022
  13. Koudelka, A. P., Hufnagel, L. A. and Koudelka, G. B. (2004) Purification and characterization of the repressor of the shiga toxin-encoding bacteriophage 933W: DNA binding, gene regulation, and autocleavage. J. Bacteriol. 186, 7659-7669. https://doi.org/10.1128/JB.186.22.7659-7669.2004
  14. Kwan, T., Liu, J., DuBow, M., Gros, P. and Pelletier, J. (2005) The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. Proc. Natl. Acad. Sci. USA 102, 5174-5179. https://doi.org/10.1073/pnas.0501140102
  15. Lee, C. Y. and Iandolo J. J. (1986) Integration of staphylococcal phage L54a occurs by site-specific recombination: structural analysis of the attachment sites Proc. Natl. Acad. Sci. USA 83, 5474 -5478.
  16. Lee, C. Y. and Iandolo J. J. (1988) Structural analysis of staphylococcal bacteriophage phi 11 attachment sites. J. Bacteriol. 170, 2409-2411. https://doi.org/10.1128/jb.170.5.2409-2411.1988
  17. Lee, C. Y. and Buranen, S. L. (1989) Extent of the DNA sequence required in integration of staphylococcal bacteriophage L54a. J. Bacteriol. 171, 1652-1657. https://doi.org/10.1128/jb.171.3.1652-1657.1989
  18. Little, J. W. (1984) Autodigestion of lexA and phage lambda repressors. Proc. Natl. Acad. Sci. USA 81, 1375-1379. https://doi.org/10.1073/pnas.81.5.1375
  19. Mandal, N. C. and Leib, M. (1976) Heat-sensitive DNA-binding activity of the cI product of bacteriophage lambda. Molec. Gen. Genet. 146, 299-302. https://doi.org/10.1007/BF00701254
  20. Martin, M. C., Alonso, J. C. Suarez, J. E. and Alvarez, M. A. (2000) Generation of food-grade recombinant lactic acid bacterium strains by site-specific recombination. Appl. Environ. Microbiol. 66, 2599-2604. https://doi.org/10.1128/AEM.66.6.2599-2604.2000
  21. Narita, S., Kaneko, J., Chiba, J., Piemont, Y., Jarraud, S., Etienne, J. and Kamio, Y. (2001) Phage conversion of Panton-Valentine leukocidin in Staphylococcus aureus: molecular analysis of a PVL-converting phage, phiSLT. Gene 268, 195-206. https://doi.org/10.1016/S0378-1119(01)00390-0
  22. Nohmi, T. J., Battista, R., Dodson, L. A. and Walker, G. C. (1988) RecA-mediated cleavage activates UmuD for mutagenesis: mechanistic relationship between transcriptional derepression and posttranslational activation. Proc. Natl. Acad. Sci. USA 85, 1816-1820. https://doi.org/10.1073/pnas.85.6.1816
  23. Oppenheim, A. B., Kobiler, Stavans, O. J., Court, D. L. and Adhya, S. (2005) Switches in bacteriophage lambda development. Annu. Rev. Genet. 39, 409-429. https://doi.org/10.1146/annurev.genet.39.073003.113656
  24. Ptashne, M. (1986) Protein-DNA interactions and gene control in A genetic switch. pp. 33-47. Blackwell Press, PaloAlto, Calif.
  25. Sambrook, J. and Russell, D. W. (2001) In Molecular Cloning: A Laboratory Manual. 3rd ed., Cold Spring Harbor Laboratory Press, CSH, New York, USA.
  26. Shaner, S. L. and Gaissarian, E. S. (1996) Binding of Escherichia coli LexA repressor to the RecA operator. J. Mol. Recognit. 9, 468-473. https://doi.org/10.1002/(SICI)1099-1352(199634/12)9:5/6<468::AID-JMR284>3.0.CO;2-W
  27. Sumby, P. and Waldor, M. K. (2003) Transcription of the toxin genes present within the Staphylococcal phage phiSa3ms is intimately linked with the phage's life cycle. J. Bacteriol. 185, 6841-6851. https://doi.org/10.1128/JB.185.23.6841-6851.2003
  28. Vershon, A. K., Liao, S. M., McClure, W. R. and Sauer, R. T. (1987) Bacteriophage P22 Mnt repressor. DNA binding and effects on transcription in vitro. J. Mol. Biol. 195, 311-322. https://doi.org/10.1016/0022-2836(87)90652-8
  29. Whitson, P. A., Olson, J. S. and Matthews, K. S. (1986) Thermodynamic analysis of the lactose repressor-operator DNA interaction. Biochemistry 25, 3852-3858. https://doi.org/10.1021/bi00361a017
  30. Yamaguchi, T., Hayashi, T., Takami, H., Nakasone, K., Ohnishi, M., Nakayama, K., Yamada, S., Komatsuzawa, H. and Sugai, M. (2000) Phage conversion of exfoliative toxin A production in Staphylococcus aureus. Mol. Microbiol. 38, 694-705. https://doi.org/10.1046/j.1365-2958.2000.02169.x
  31. Ye, Z. H. and Lee, C. Y. (1989) Nucleotide sequence and genetic characterization of staphylococcal bacteriophage L54a int and xis genes. J. Bacteriol. 171, 4146-4153. https://doi.org/10.1128/jb.171.8.4146-4153.1989

Cited by

  1. Antagonistic effects Na+ and Mg2+ on the structure, function, and stability of mycobacteriophage L1 repressor vol.42, pp.5, 2009, https://doi.org/10.5483/BMBRep.2009.42.5.293
  2. Potential of Bacteriophages and Their Lysins in the Treatment of MRSA vol.25, pp.6, 2011, https://doi.org/10.2165/11595610-000000000-00000
  3. Betanodavirus non-structural protein B2: A novel necrotic death factor that induces mitochondria-mediated cell death in fish cells vol.385, pp.1, 2009, https://doi.org/10.1016/j.virol.2008.11.036
  4. Genomic characterization provides new insight into Salmonella phage diversity vol.14, pp.1, 2013, https://doi.org/10.1186/1471-2164-14-481
  5. Physicochemical properties and distinct DNA binding capacity of the repressor of temperate Staphylococcus aureus phage φ11 vol.276, pp.7, 2009, https://doi.org/10.1111/j.1742-4658.2009.06924.x
  6. Moderately thermostable phage Φ11 Cro repressor has novel DNA-binding capacity and physicochemical properties vol.42, pp.3, 2009, https://doi.org/10.5483/BMBRep.2009.42.3.160
  7. Stabilization of the primary sigma factor of Staphylococcus aureus by core RNA polymerase vol.43, pp.3, 2010, https://doi.org/10.5483/BMBRep.2010.43.3.176
  8. A novel site-specific recombination system derived from bacteriophage ϕMR11 vol.368, pp.2, 2008, https://doi.org/10.1016/j.bbrc.2008.01.045
  9. Betanodavirus non-structural protein B1: A novel anti-necrotic death factor that modulates cell death in early replication cycle in fish cells vol.385, pp.2, 2009, https://doi.org/10.1016/j.virol.2008.11.048