• Title/Summary/Keyword: Helix II domain

Search Result 10, Processing Time 0.023 seconds

Glutamic Acid Rich Helix II Domain of the HIV-1 Vpu has Transactivation Potential in Yeast

  • Hong, Seung-Keun;Bae, Yong-Soo;Kim, Jung-Woo
    • BMB Reports
    • /
    • v.32 no.4
    • /
    • pp.405-408
    • /
    • 1999
  • The transactivation potential of HIV-1 Vpu was identified from the yeast two-hybrid screening process. The helix II domain of HIV-1 Vpu protein and mutant Vpu protein lacking the transmembrane domain exhibited transactivation of the LacZ and Leu2 reporter genes carrying LexA upstream activating sequences, but full-length HIV-1 Vpu and the helix I domain of HIV-1 Vpu did not. The helix II domain of HIV-1 Vpu consists of a number of acidic amino acids, and is especially rich in glutamic acid, a characteristic of many transcription factors. This result suggests that protein-protein interaction may occur through the acidic helix II domain of HIV-1 Vpu.

  • PDF

Backbone assignment of human Hoxc9DBD

  • Ja-Shil Hyun;Sung Jean Park
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.27 no.4
    • /
    • pp.23-27
    • /
    • 2023
  • Hoxc, or the Homeobox C cluster, is a group of genes that play a crucial role in embryonic development, particularly in patterning the body along the anterior-posterior axis. These genes encode transcription factors, which are proteins that bind to DNA and regulate the expression of other genes. Hoxc9 is specifically involved in the development of the skeletal system, nervous system, and adipose tissue. Hoxc9 overexpression has been linked to the development of various cancers such as leukemia and breast cancer. Here, we assigned the chemical shifts Hoxc9 DNA binding domain (DBD) using heteronuclear NMR techniques. The helical regions of Hoxc9 DBD correspond to the residues T200 - F213 (Helix I), T218 - L229 (Helix II), and T232 - K249 (Helix III). Our result would be helpful for studing the molecular interactions of the Hoxc9 DBD and other proteins.

Purification and NMR studies on Phosphatase domain of UBLCP1

  • Oh, Hyo-Sun;Ko, Sung-Geon;Moon, Sun-Jin;Shin, Hang-Cheol;Lee, Weon-Tae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.13 no.2
    • /
    • pp.126-134
    • /
    • 2009
  • UBLCP1 is composed of Ubiquitin Like domain and RNA Polymerase II Phosphatase I domain. Phosphatase domain (25.9KDa) has been cloned into the E.coli using pET32a vector with TEV protease cleavage site and successfully purified as a monomer using affinity chromatography and histidine tag was cleaved with TEV protease for structural studies. Our results indicated that the Phosphatase domain showed well-defined folded structure based on data from one-dimensional and two-dimensional NMR spectroscopy. Data form circular dichroism also suggested that Phosphatase domain consisted of both ${\alpha}$ -helix and ${\beta}$ -sheet. This information will be used for detailed structural study of UBLCP1.

NMR and Circular Dichroism Studies on Human CD99 Transmembrane Domain

  • Kim, Hai-Young;Shin, Joon;Shin, Young-Kee;Park, Seong-Hoe;Lee, Weon-Tae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.7 no.1
    • /
    • pp.37-45
    • /
    • 2003
  • Human CD99 is a ubiquitous 32-kDa transmembrane protein encoded by mic2 gene. Recently it has been reported that expression of a splice variant of CD99 transmembrane protein (Type I and Type II) increases invasive ability of human breast cancer cells. To understand structural basis for cellular functions of CD99 Type II, we have initiated studies on hCD99$\^$TMcytoI/ using circular dichroism (CD) and multi-dimensional NMR spectroscopy. CD spectrum of hCD99$\^$TMytoI/ in the presence of 200mM DPC and CHAPS displayed an existence ${\alpha}$-helical conformation, showing that it could form an ${\alpha}$-helix under membrane environments. In addition, we have found that the cytoplasmic domain of CD99 would form symmetric dimmer in the presence of transmembrane domain. Although it has been rarely figured out the correlation between structure and functional mechanism of hCD99$\^$TMcytoI/, the dimerization or oligomerization would play an important role in its biological function.

  • PDF

Purification and Characterization of Repressor of Temperate S. aureus Phage Φ11

  • Das, Malabika;Ganguly, Tridib;Chattoraj, Partho;Chanda, Palas Kumar;Bandhu, Amitava;Lee, Chia Yen;Sau, Subrata
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.740-748
    • /
    • 2007
  • To gain insight into the structure and function of repressor proteins of bacteriophages of gram-positive bacteria, repressor of temperate Staphylococcus aureus phage ${\phi}11$ was undertaken as a model system here and purified as an N-terminal histidine-tagged variant (His-CI) by affinity chromatography. A ~19 kDa protein copurified with intact His-CI (~ 30 kDa) at low level was resulted most possibly due to partial cleavage at its Ala-Gly site. At ~10 nM and higher concentrations, His-CI forms significant amount of dimers in solution. There are two repressor binding sites in ${\phi}11$ cI-cro intergenic region and binding to two sites occurs possibly by a cooperative manner. Two sites dissected by HincII digestion were designated operators $O_L$ and $O_R$, respectively. Equilibrium binding studies indicate that His-CI binds to $O_R$ with a little more strongly than $O_L$ and binding species is probably dimeric in nature. Interestingly His-CI binding affinity reduces drastically at elevated temperatures ($32-42^{\circ}C$). Both $O_L$ and $O_R$ harbor a nearly identical inverted repeat and studies show that ${\phi}11$ repressor binds to each repeat efficiently. Additional analyses indicate that ${\phi}11$ repressor, like $\lambda$ repressor, harbors an N-terminal domain and a C-terminal domain which are separated by a hinge region. Secondary structure of ${\phi}11$ CI even nearly resembles to that of $\lambda$ phage repressor though they differ at sequence level. The putative N-terminal HTH (helix-turn-helix) motif of ${\phi}11$ repressor belongs to the HTH -XRE-family of proteins and shows significant identity to the HTH motifs of some proteins of evolutionary distant organisms but not to HTH motifs of most S. aureus phage repressors.

Recent Advances in Structural Studies of Antifreeze Proteins (구조 생물학을 이용한 Antifreeze protein의 최근 연구동향)

  • Lee, Jun-Hyuck;Lee, Sung-Gu;Kim, Hak-Jun
    • Ocean and Polar Research
    • /
    • v.33 no.2
    • /
    • pp.159-169
    • /
    • 2011
  • Antifreeze proteins (AFPs) have ice binding affinity, depress freezing temperature and inhibit ice recystallization which protect cellular membranes in polar organisms. Recent structural studies of antifreeze proteins have significantly expanded our understanding of the structure-function relationship and ice crystal growth inhibition. Although AFPs (Type I-IV AFP from fish, insect AFP and Plant AFP) have completely different fold and no sequence homology, they share a common feature of their surface area for ice binding property. The conserved ice-binding sites are relatively flat and hydrophobic. For example, Type I AFP has an amphipathic, single ${\alpha}$-helix and has regularly spaced Thr-Ala residues which make direct interaction with oxygen atoms of ice crystals. Unlike Type I AFP, Type II and III AFP are compact globular proteins that contain a flat ice-binding patch on the surface. Type II and Type III AFP show a remarkable structural similarity with the sugar binding lectin protein and C-terminal domain of sialic acid synthase, respectively. Type IV is assumed to form a four-helix bundle which has sequence similarity with apolipoprotein. The results of our modeling suggest an ice-binding induced structural change of Type IV AFP. Insect AFP has ${\beta}$-helical structure with a regular array of Thr-X-Thr motif. Threonine residues of each Thr-X-Thr motif fit well into the ice crystal lattice and provide a good surface-surface complementarity. This review focuses on the structural characteristics and details of the ice-binding mechanism of antifreeze proteins.

Crystal Structure of GRIP1 PDZ6-peptide complex reveals the structural basis for class II PDZ target recognition and PDZ domain-mediated multimerization

  • Im, Young-Jun;Park, Seong-Ho;Park, Seong-Hwan;Lee, Jun-Hyuck;Kang, Gil-Bu;Morgan Sheng;Kim, Eunjoon;Eom, Soo-Hyun
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.4-4
    • /
    • 2002
  • PDZ domains bind to short segments within target proteins in a sequence-specific fashion. GRIP/ABP family proteins contain six to seven PDZ domains and interact via its sixth PDZ domain (class Ⅱ) with the C-termini of various proteins, including liprin-α. In addition the PDZ456 domain mediates the formation of homo- and heteromultimers of GRIP proteins. To better understand the structural basis of peptide recognition by a class Ⅱ PDZ domain and DZ-mediated multimerization, we determined the crystal structures of the GRIPI PDZ6 domain, alone and in complex with a synthetic C-terminal octapeptide of human liprin-α, at resolutions of 1.5 Å and 1.8 Å, respectively. Remarkably, unlike other class Ⅱ PDZ domains, Ile736 at αB5 rather than conserved Leu732 at αB1 makes a direct hydrophobic contact with the side chain of the Tyr at the -2 position of the ligand. Moreover, the peptide-bound structure of PDZ6 shows a slight reorientation of helix αB, indicating that the second hydrophobic pocket undergoes a conformational adaptation to accommodate the bulkiness of the Tyr's side chain, and forms an antiparallel dimer through an interface located at a site distal to the peptide-binding groove. This configuration may enable formation of GRIP multimers and efficient clustering of GRIP-binding proteins.

  • PDF

Differential Activities of FOXL2 and Its Mutants on SF-1-Induced CYP19 Transcriptional Activation (SF-1을 매개한 CYP19의 전사활성에 미치는 FOXL2 야생형과 돌연변이형의 차별적 영향)

  • Park, Mi-Ra;Kim, Ah-Young;Na, Soon-Young;Kim, Hong-Man;Lee, Kang-Seok;Bae, Jee-Hyeon;Ko, Jeong-Jae
    • Development and Reproduction
    • /
    • v.14 no.2
    • /
    • pp.91-97
    • /
    • 2010
  • FOXL2 is a winged-helix/forkhead (FH) domain transcription factor, and mutations in FOXL2 gene are responsible for blepharophimosis-ptosis-epicanthus inversus syndrome (BPES). BPES is an autosomal dominant genetic disease. BPES type I patients exhibit both premature ovarian failure (POF) and eyelid malformation, while only the eyelid defect is observed in BPES type II. FOXL2-null ovaries showed a blockage of granulosa cell differentiation, suggesting that FOXL2 plays an essential role for proper ovarian folliculogenesis. Previously, we screened for FOXL2-interacting proteins and identified steroidogenic factor-1 (SF-1) which is known to be required for gonad development and transactivates steroidogenic enzymes including CYP19. In the present study, we demonstrated that FOXL2 transactivates CYP19 and stimulated the transcriptional activation of CYP19 induced by SF-1. In contrast, FOXL2 mutants found in BPES type I and II exhibited compromised abilities to enhance CYP19 induction mediated by SF-1. Thus, this study provides a functional difference between wild-type FOXL2 and its mutants which may aid to understand pathophysiology of BPES elicited by FOXL2 mutations.

NMR structural studies on Human CD99 Type I

  • Kim, Hai-Young;Kim, Young-Mee;Joon Shin;Shin, Young-Kee;Park, Seong-Hoe;Lee, Weontae
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.69-69
    • /
    • 2003
  • Human CD99 is a ubiquitous 32-kDa transmembrane protein encoded by the mic2 gene. The major cellular functions of CD99 protein are related to homotypic cell adhension, apoptosis, vesicular protein transport, and differentiation of thymocytes or T cells. Recently it has been reported that expression of a splice variant of CD99 transmembrane protein (Type I and Type II) increases invasive ability of human breast cancer cells. To understand structural basis for cellular functions of CD99 (Type I), we have initiated studies on hCD99$^{TMcytoI}$ and hCD99$^{cytoI}$ using circular dichroism (CD) and multi-dimensional NMR spectroscopy. CD spectrum of hCD99$^{TMcytoI}$ in the presence of 200mM DPC and CHAPS displayed an existence $\alpha$-helical conformation. The solution structure of hCD99$^{cytoI}$ determined by NMR is composed of one N-terminal $\alpha$-helix, $\alpha$A, two C-terminal short $\alpha$-helix segments, $\alpha$B and $\alpha$C. While $\alpha$A and $\alpha$B are connected by the long flexible loop, $\alpha$B and $\alpha$C connected by type III$\beta$-turn. Although it has been rarely figured out the correlation between structure and functional mechanism of hCD99$^{TMcytoI}$ and hCD99$^{cytoI}$, there is possibility of dimerization or oligomerization. In addition, the feasible mechanism of hCD99$^{cytoI}$ is that it could have intramolecular interaction between the N- and C- terminal domain through large flexible AB loop.

  • PDF

Bacillus thuringiensis Cry4A and Cry4B Mosquito-larvicidal Proteins: Homology-based 3D Model and Implications for Toxin Activity

  • Angsuthanasombat, Chanan;Uawithya, Panapat;Leetachewa, Somphob;Pornwiroon, Walairat;Ounjai, Puey;Kerdcharoen, Teerakiat;Katzenmeier, Gerd;Panyim, Sakol
    • BMB Reports
    • /
    • v.37 no.3
    • /
    • pp.304-313
    • /
    • 2004
  • Three-dimensional (3D) models for the 65-kDa activated Cry4A and Cry4B $\delta$-endotoxins from Bacillus thuringiensis subsp. israelensis that are specifically toxic to mosquito-larvae were constructed by homology modeling, based on atomic coordinates of the Cry1Aa and Cry3Aa crystal structures. They were structurally similar to the known structures, both derived 3D models displayed a three-domain organization: the N-terminal domain (I) is a seven-helix bundle, while the middle and C-terminal domains are primarily comprise of anti-parallel $\beta$-sheets. Circular dichroism spectroscopy confirmed the secondary structural contents of the two homology-based Cry4 structures. A structural analysis of both Cry4 models revealed the following: (a) Residues Arg-235 and Arg-203 are located in the interhelical 5/6 loop within the domain I of Cry4A and Cry4B, respectively. Both are solvent exposed. This suggests that they are susceptible to tryptic cleavage. (b) The unique disulphide bond, together with a proline-rich region within the long loop connecting ${\alpha}4$ and ${\alpha}5$ of Cry4A, were identified. This implies their functional significance for membrane insertion. (c) Significant structural differences between both models were found within domain II that may reflect their different activity spectra. Structural insights from this molecular modeling study would therefore increase our understanding of the mechanic aspects of these two closely related mosquito-larvicidal proteins.