• Title/Summary/Keyword: Height variation

Search Result 1,128, Processing Time 0.025 seconds

Effect of substrate composition on the growth of roses and hydrangeas in artificial ground (인공지반에서 식재지반의 구성이 장미와 수국의 생장에 미치는 영향)

  • You, Soojin;Han, Seung Won;Kim, Kwang Jin;Jeong, Na Ra;Yun, Ji Hye
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.4
    • /
    • pp.658-666
    • /
    • 2020
  • The purpose of this study was to select a suitable planting substrate for multilayered plantings in an apartment landscape space. The experiment was conducted between May to October 2019, at the National Institute of Horticultural and Herbal Science. Planting substrate was prepared in six repetitions of eight treatment zones using mulching material, horticultural soil, bottom ash, and subgrade soil. Rosa hybrid 'Barkarole' and Hydrangea macrophylla 'Nikko Blue' were selected as the experimental plants. We investigated the monthly variation and effect of the substrate type on the growth (plant height, number of branches, leaf length, leaf width, and plant area of the substrates) of the plants. In R. hybrid 'Barkarole' grown in 20 cm of horticultural soil and 10 cm of bottom ash, the plants were taller(102.2±5.8 cm), had more branches (5.5±0.6 each), longer leaves (10.9±1.0 cm), and greater leaf width (6.2±0.5 cm) and plant area (4077.1±416.6 cm2)(p<0.05). H. macrophylla 'Nikko Blue' showed the best growth from 3cm of mulching, 20cm of horticultural topsoil, and 10cm of bottom ash, which resulted in taller plants (43.6±2.1 cm), more branches (4.9±0.8 each), longer leaves (7.2±0.5 cm), and greater leaf width(4.3±0.3 cm) and plant area (344.5±43.2 cm2). Through this study, it was possible to propose an optimal planting substrate for shrubs for multi-layered landscaping.

A study for improvement of far-distance performance of a tunnel accident detection system by using an inverse perspective transformation (역 원근변환 기법을 이용한 터널 영상유고시스템의 원거리 감지 성능 향상에 관한 연구)

  • Lee, Kyu Beom;Shin, Hyu-Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.3
    • /
    • pp.247-262
    • /
    • 2022
  • In domestic tunnels, it is mandatory to install CCTVs in tunnels longer than 200 m which are also recommended by installation of a CCTV-based automatic accident detection system. In general, the CCTVs in the tunnel are installed at a low height as well as near by the moving vehicles due to the spatial limitation of tunnel structure, so a severe perspective effect takes place in the distance of installed CCTV and moving vehicles. Because of this effect, conventional CCTV-based accident detection systems in tunnel are known in general to be very hard to achieve the performance in detection of unexpected accidents such as stop or reversely moving vehicles, person on the road and fires, especially far from 100 m. Therefore, in this study, the region of interest is set up and a new concept of inverse perspective transformation technique is introduced. Since moving vehicles in the transformed image is enlarged proportionally to the distance from CCTV, it is possible to achieve consistency in object detection and identification of actual speed of moving vehicles in distance. To show this aspect, two datasets in the same conditions are composed with the original and the transformed images of CCTV in tunnel, respectively. A comparison of variation of appearance speed and size of moving vehicles in distance are made. Then, the performances of the object detection in distance are compared with respect to the both trained deep-learning models. As a result, the model case with the transformed images are able to achieve consistent performance in object and accident detections in distance even by 200 m.

Development of Carbon Emission Factors and Biomass Allometric Equations for Metasequoia glyptostroboides and Platanus occidentalis in Urban Forests (정주지의 메타세쿼이아와 양버즘나무의 탄소 배출 계수 및 바이오매스 상대생장식 개발)

  • Jun-Young Jung;Subin Im;Hyun-Jun Kim;Kye-Han Lee
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.2
    • /
    • pp.127-135
    • /
    • 2023
  • This study aimed to develop biomass allometric equations and estimate carbon emission factors, such as the wood density, biomass-expansion factor, and root-to-shoot ratio, for Platanus occidentalis and Metasequoia glyptostroboides planted in urban areas. Twenty M. glyptostroboides and 25 P. occidentalis trees were harvested, and the dry weights and stem volumes of stems, branches, leaves, and roots (>5 mm) were measured. The wood densities of M. glyptostroboides and P. occidentalis were 0.293 ± 0.008 g cm-3 and 0.509 ± 0.018 g cm-3, and the biomass-expansion factors were 1.738 ± 0.031 and 1.561 ± 0.035. The root-to-shoot ratios were 0.446 ± 0.009 and 0.402 ± 0.012. The uncertainty tests (coefficient of variation, %) gave 2.8% and 3.5% values for wood density, 1.8% and 2.3% for biomass-expansion factor, and 2.1% and 2.9% for root-to-shoot ratio, respectively. Among the developed allometric equations, Model I using the diameter at breast height (DBH) was suitable. The allometric equations of M. glyptostroboides and P. occidentalis above ground were y = 1.679 (DBH)1.315 and y = 0.505 (DBH)1.896, and the allometric equations of the root and total were y = 0.746 (DBH)1.315, y = 0.301 (DBH)1.751, y = 2.422 (DBH)1.316, and y = 0.787 (DBH)1.858. If the carbon-emission factors of this study and biomass allometric equations of the three developed models are used to estimate the carbon storage and biomass of urban forests, errors caused by not considering the use of fixed factors and the environmental differences can be reduced.

The Differences of Rice Growth and Yield at Various Agroclimatic Regions in Chungnam Province (충남지역 농업기후 지대별 벼 생육 및 수량 변이)

  • Choi, N.G.;Park, J.H.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.20 no.1
    • /
    • pp.163-174
    • /
    • 2018
  • Rice cultivation is immensely affected by many climatic factors including temperature, precipitation, etc, and imbalanced climatic conditions negatively affect the growth of rice. In this study, we investigated the effects of different agroclimatic zones of Chungnam Province on rice quality and examined the correlations between climatic characteristics and rice yield components. Average temperatures and rainfall were higher in 'Western Sobaek Inland' than those in the 'South Western coastal zone, and precipitation records showed a wide variation among counties due to typhoons during the examined periods. The average accumulative temperature affecting the magnitude of production during reproductive growth periods was higher in "Cheon-An", "Gong-Ju", "Yeon-Gi (Se-Jong)", "Bo-Ryeong", and "Dang-Jin" counties than those in other counties. The plant height was higher in 'Western Sobaek Inland' counties such as "Yeon-Gi(Se-Jong)" and "Cheon-An", and 'Southern Charyeong Plain' counties such as "Cheong-Yang", "Dang-Jin", and "A-San", than those in other counties. The number of tillers during the 40 days after rice transplantation in "Seo-Cheon" and "Bo-Ryeong" counties increased compared to other counties. This result was relevant to the fact that the date of rice transplantation in those counties was 3 to 4 days later than those in other counties of Chung-Nam Province. The average yield (milled rice basis) was the highest in 'Western Sobaek Inland' zone, showing 3,756 kg ha-1, followed by 'Southern Charyeong Plain' zone showing 3,621kg ha-1, and was the lowest in 'South Western coastal zone by 3,315kg ha-1. "Yeon-Gi(Se-Jong)" and "Dang-Jin" counties showed the highest yields of 4,100kg ha-1. "Seo-San", "Seo-Cheon", and "Tae-An" counties were relatively lower yields of 3,240~3,280kg ha-1 in comparison of other counties.

Studies on the Rice Yield Decreased by Ground Water Irrigation and Its Preventive Methods (지하수 관개에 의한 수도의 멸준양상과 그 방지책에 관한 연구)

  • 한욱동
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.1
    • /
    • pp.3225-3262
    • /
    • 1974
  • The purposes of this thesis are to clarify experimentally the variation of ground water temperature in tube wells during the irrigation period of paddy rice, and the effect of ground water irrigation on the growth, grain yield and yield components of the rice plant, and, furthermore, when and why the plant is most liable to be damaged by ground water, and also to find out the effective ground water irrigation methods. The results obtained in this experiment are as follows; 1. The temperature of ground water in tube wells varies according to the location, year, and the depth of the well. The average temperatures of ground water in a tubewells, 6.3m, 8.0m deep are $14.5^{\circ}C$ and $13.1^{\circ}C$, respercively, during the irrigation period of paddy rice (From the middle of June to the end of September). In the former the temperature rises continuously from $12.3^{\circ}C$ to 16.4$^{\circ}C$ and in the latter from $12.4^{\circ}C$ to $13.8^{\circ}C$ during the same period. These temperatures are approximately the same value as the estimated temperatures. The temperature difference between the ground water and the surface water is approximately $11^{\circ}C$. 2. The results obtained from the analysis of the water quality of the "Seoho" reservoir and that of water from the tube well show that the pH values of the ground water and the surface water are 6.35 and 6.00, respectively, and inorganic components such as N, PO4, Na, Cl, SiO2 and Ca are contained more in the ground water than in the surface water while K, SO4, Fe and Mg are contained less in the ground water. 3. The response of growth, yield and yield components of paddy rice to ground water irrigation are as follows; (l) Using ground water irrigation during the watered rice nursery period(seeding date: 30 April, 1970), the chracteristics of a young rice plant, such as plant height, number of leaves, and number of tillers are inferior to those of young rice plants irrigated with surface water during the same period. (2) In cases where ground water and surface water are supplied separately by the gravity flow method, it is found that ground water irrigation to the rice plant delays the stage at which there is a maximum increase in the number of tillers by 6 days. (3) At the tillering stage of rice plant just after transplanting, the effect of ground water irrigation on the increase in the number of tillers is better, compared with the method of supplying surface water throughout the whole irrigation period. Conversely, the number of tillers is decreased by ground water irrigation at the reproductive stage. Plant height is extremely restrained by ground water irrigation. (4) Heading date is clearly delayed by the ground water irrigation when it is practised during the growth stages or at the reproductive stage only. (5) The heading date of rice plants is slightly delayed by irrigation with the gravity flow method as compared with the standing water method. (6) The response of yield and of yield components of rice to ground water irrigation are as follows: \circled1 When ground water irrigation is practised during the growth stages and the reproductive stage, the culm length of the rice plant is reduced by 11 percent and 8 percent, respectively, when compared with the surface water irrigation used throughout all the growth stages. \circled2 Panicle length is found to be the longest on the test plot in which ground water irrigation is practised at the tillering stage. A similar tendency as that seen in the culm length is observed on other test plots. \circled3 The number of panicles is found to be the least on the plot in which ground water irrigation is practised by the gravity flow method throughout all the growth stages of the rice plant. No significant difference is found between the other plots. \circled4 The number of spikelets per panicle at the various stages of rice growth at which_ surface or ground water is supplied by gravity flow method are as follows; surface water at all growth stages‥‥‥‥‥ 98.5. Ground water at all growth stages‥‥‥‥‥‥62.2 Ground water at the tillering stage‥‥‥‥‥ 82.6. Ground water at the reproductive stage ‥‥‥‥‥ 74.1. \circled5 Ripening percentage is about 70 percent on the test plot in which ground water irrigation is practised during all the growth stages and at the tillering stage only. However, when ground water irrigation is practised, at the reproductive stage, the ripening percentage is reduced to 50 percent. This means that 20 percent reduction in the ripening percentage by using ground water irrigation at the reproductive stage. \circled6 The weight of 1,000 kernels is found to show a similar tendency as in the case of ripening percentage i. e. the ground water irrigation during all the growth stages and at the reproductive stage results in a decreased weight of the 1,000 kernels. \circled7 The yield of brown rice from the various treatments are as follows; Gravity flow; Surface water at all growth stages‥‥‥‥‥‥514kg/10a. Ground water at all growth stages‥‥‥‥‥‥428kg/10a. Ground water at the reproductive stage‥‥‥‥‥‥430kg/10a. Standing water; Surface water at all growh stages‥‥‥‥‥‥556kg/10a. Ground water at all growth stages‥‥‥‥‥‥441kg/10a. Ground water at the reproductive stage‥‥‥‥‥‥450kg/10a. The above figures show that ground water irrigation by the gravity flow and by the standing water method during all the growth stages resulted in an 18 percent and a 21 percent decrease in the yield of brown rice, respectively, when compared with surface water irrigation. Also ground water irrigation by gravity flow and by standing water resulted in respective decreases in yield of 16 percent and 19 percent, compared with the surface irrigation method. 4. Results obtained from the experiments on the improvement of ground water irrigation efficiency to paddy rice are as follows; (1) When the standing water irrigation with surface water is practised, the daily average water temperature in a paddy field is 25.2$^{\circ}C$, but, when the gravity flow method is practised with the same irrigation water, the daily average water temperature is 24.5$^{\circ}C$. This means that the former is 0.7$^{\circ}C$ higher than the latter. On the other hand, when ground water is used, the daily water temperatures in a paddy field are respectively 21.$0^{\circ}C$ and 19.3$^{\circ}C$ by practising standing water and the gravity flow method. It can be seen that the former is approximately 1.$0^{\circ}C$ higher than the latter. (2) When the non-water-logged cultivation is practised, the yield of brown rice is 516.3kg/10a, while the yield of brown rice from ground water irrigation plot throughout the whole irrigation period and surface water irrigation plot are 446.3kg/10a and 556.4kg/10a, respectivelely. This means that there is no significant difference in yields between surface water irrigation practice and non-water-logged cultivation, and also means that non-water-logged cultivation results in a 12.6 percent increase in yield compared with the yield from the ground water irrigation plot. (3) The black and white coloring on the inside surface of the water warming ponds has no substantial effect on the temperature of the water. The average daily water temperatures of the various water warming ponds, having different depths, are expressed as Y=aX+b, while the daily average water temperatures at various depths in a water warming pond are expressed as Y=a(b)x (where Y: the daily average water temperature, a,b: constants depending on the type of water warming pond, X; water depth). As the depth of water warning pond is increased, the diurnal difference of the highest and the lowest water temperature is decreased, and also, the time at which the highest water temperature occurs, is delayed. (4) The degree of warming by using a polyethylene tube, 100m in length and 10cm in diameter, is 4~9$^{\circ}C$. Heat exchange rate of a polyethylene tube is 1.5 times higher than that or a water warming channel. The following equation expresses the water warming mechanism of a polyethylene tube where distance from the tube inlet, time in day and several climatic factors are given: {{{{ theta omega (dwt)= { a}_{0 } (1-e- { x} over { PHI v })+ { 2} atop { SUM from { { n}=1} { { a}_{n } } over { SQRT { 1+ {( n omega PHI) }^{2 } } } } LEFT { sin(n omega t+ { b}_{n }+ { tan}^{-1 }n omega PHI )-e- { x} over { PHI v }sin(n omega LEFT ( t- { x} over {v } RIGHT ) + { b}_{n }+ { tan}^{-1 }n omega PHI ) RIGHT } +e- { x} over { PHI v } theta i}}}}{{{{ { theta }_{$\infty$ }(t)= { { alpha theta }_{a }+ { theta }_{ w'} +(S- { B}_{s } ) { U}_{w } } over { beta } , PHI = { { cpDU}_{ omega } } over {4 beta } }}}} where $\theta$$\omega$; discharged water temperature($^{\circ}C$) $\theta$a; air temperature ($^{\circ}C$) $\theta$$\omega$';ponded water temperature($^{\circ}C$) s ; net solar radiation(ly/min) t ; time(tadian) x; tube length(cm) D; diameter(cm) ao,an,bn;constants determined from $\theta$$\omega$(t) varitation. cp; heat capacity of water(cal/$^{\circ}C$ ㎥) U,Ua; overall heat transfer coefficient(cal/$^{\circ}C$ $\textrm{cm}^2$ min-1) $\omega$;1 velocity of water in a polyethylene tube(cm/min) Bs ; heat exchange rate between water and soil(ly/min)

  • PDF

Effects of Evaporative Water-loss from Cultural Pots on Growth of Pot-grown Ornamental Plants (화분(花盆)의 수분증발(水分蒸發)이 분식화훼류(盆植花卉類)의 생육(生育)에 미치는 영향(影響))

  • Suh, Youn-gkyo
    • Korean Journal of Agricultural Science
    • /
    • v.4 no.2
    • /
    • pp.317-343
    • /
    • 1977
  • This study was carried out to obtain the informations about evaporation from pot, soil temperature and soil atmosphere composition in pot, and the effect on the growth of nine ornamental species using seven different containers. The investigated containers were clay pot(CP), clay pot painted in green(CP-P), varnished clay pot(CP-V), polyethylene film inserting in clay pot(CP-PI), clay pot mulched with black polyethylene film(CP-PM), porcelain pot(POP), and plastic pot(PLP). Nine ornamental species were balsam(Impatiens balsamina), chrysanthemum(Chrysanthemum morifolium), cosmos(Cosmos bipinatus), English ivy(Hedera helix), geranium(Pelargonium zonale), kochia(Kochia scoparia var. trichophila), marigold(Tagetes patula), ornamental kale(Brassica oleraceae var. acephala), and salvia (Salvia splendens). The results obtained are summarized as follows: 1. Dry weight of all tested species grown in PLP, POP, CP-P, CP-V and CP-PI was heavier than that of CP. 2. Plant height in nine tested species grown in PLP, POP, CP-P, CP-V, and CP-PI was taller than that of CP. 3. Geranium grown in PLP, POP, CP-P, and CP-V gave more number of leaf than that of CP. 4. The number of flower in balsam grown in PLP, POP, CP-P, CP-V and CP-PI was more than that of CP. The result from marigold was very similar to this tendency. Spike length and floret number in salvia gave the same tendency, but its spike number was not different among containers used. 5. The average diurnal evaporation from PLP and POP was about 43% of that of CP. About two third of total evaporation from CP was through pot wall. 6. The evaporation rate from the slowest to the highest was PLP, POP, CP-P, CP-V, CP-PI, CP-PM and CP. Containers inhibiting evaporation through pot wall hold more soil moisture than CP from one day after water supply. 7. The more evaporative water-loss from containers gave the lower soil temperature. The variation of soil temperature among containers was higher during the day than the night. 8. The $O_2$ concentration of soil atmosphere in CP was higher than that of nonporous containers, and the difference between them was 0.40-1.12%. The range of the $O_2$ concentration 17.95~19.62%. The $CO_2$ concentration of soil atmosphere in CP was lower than that of nonporous containers, and its range was 0.59-1.76%. This deviation in soil atmosphere composition did not influenced on the growth of plants. 9. There was a possitive correlation between the amount of soil water and the plant growth. 10. Plant grown on CP gave more total nitrogen content in top growth than that on PLP. C/N ratio was somewhat low in plant on CP. From the above results, $O_2$ and $CO_2$ concentration in soil atmosphere did not gave enough deviation to the extent which affect the plant growth. The effect of soil moisture on the plant growth using different containers was the far-most significant factor from this investigation. Therefore, it was obious that the utilization of the nonporous container might save the cost for water supply and reduce the production cost of the pot-grown ornamental plant in Korea eventually.

  • PDF

The Effects of Pergola Wisteria floribunda's LAI on Thermal Environment (그늘시렁 Wisteria floribunda의 엽면적지수가 온열환경에 미치는 영향)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.6
    • /
    • pp.115-125
    • /
    • 2017
  • This study was to investigate the user's thermal environments under the pergola($L\;7,200{\times}W\;4,200{\times}H\;2,700mn$) covered with Wisteria floribunda(Willd.) DC. according to the variation of leaf area index(LAI). We carried out detailed measurements with two human-biometeorological stations on a popular square Jinju, Korea($N35^{\circ}10^{\prime}59.8^{{\prime}{\prime}}$, $E\;128^{\circ}05^{\prime}32.0^{{\prime}{\prime}}$, elevation: 38m). One of the stations stood under a pergola, while the other in the sun. The measurement spots were instrumented with microclimate monitoring stations to continuously measure air temperature and relative humidity, wind speed, shortwave and longwave radiation from the six cardinal directions at the height of 0.6m so as to calculate the Universal Thermal Climate Index(UTCI) from $9^{th}$ April to $27^{th}$ September 2017. The LAI was measured using the LAI-2200C Plant Canopy Analyzer. The analysis results of 18 day's 1 minute term human-biometeorological data absorbed by a man in sitting position from 10am to 4pm showed the following. During the whole observation period, daily average air temperatures under the pergola were respectively $0.7{\sim}2.3^{\circ}C$ lower compared with those in the sun, daily average wind speed and relative humidity under the pergola were respectively 0.17~0.38m/s and 0.4~3.1% higher compared with those in the sun. There was significant relationship in LAI, Julian day number and were expressed in the equation $y=-0.0004x^2+0.1719x-11.765(R^2=0.9897)$. The average $T_{mrt}$ under the pergola were $11.9{\sim}25.4^{\circ}C$ lower and maximum ${\Delta}T_{mrt}$ under the pergola were $24.1{\sim}30.2^{\circ}C$ when compared with those in the sun. There was significant relationship in LAI, reduction ratio(%) of daily average $T_{mrt}$ compared with those in the sun and was expressed in the equation $y=0.0678{\ln}(x)+0.3036(R^2=0.9454)$. The average UTCI under the pergola were $4.1{\sim}8.3^{\circ}C$ lower and maximum ${\Delta}UTCI$ under the pergola were $7.8{\sim}10.2^{\circ}C$ when compared with those in the sun. There was significant relationship in LAI, reduction ratio(%) of daily average UTCI compared with those in the sun and were expressed in the equation $y=0.0322{\ln}(x)+0.1538(R^2=0.8946)$. The shading by the pergola covered with vines was very effective for reducing daytime UTCI absorbed by a man in sitting position at summer largely through a reduction in mean radiant temperature from sun protection, lowering thermal stress from very strong(UTCI >$38^{\circ}C$) and strong(UTCI >$32^{\circ}C$) down to strong(UTCI >$32^{\circ}C$) and moderate(UTCI >$26^{\circ}C$). Therefore the pergola covered with vines used for shading outdoor spaces is essential to mitigate heat stress and can create better human thermal comfort especially in cities during summer. But the thermal environments under the pergola covered with vines during the heat wave supposed to user "very strong heat stress(UTCI>$38^{\circ}C$)". Therefore users must restrain themselves from outdoor activities during the heat waves.

Comparison of Growth Charateristics, Forage Yield and Growth Analysis in Corn Hybrids for Silage Production (Silage용 옥수수의 생육특성, 수량 및 생육해석의 품종간 비교)

  • 김창호;박상철;이효원;강희경
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.18 no.2
    • /
    • pp.79-88
    • /
    • 1998
  • This experiment was conducted from May to August in 1997 to selected the wrn hybrids being suitable for silage at farm in the Kongju National University through the comparison of growth characteristics, forage yield and growth analysis about native and imported corn hybrids for silage production. In this experiment, trial design was a randomized block design with three replication, testing varieties were 4 hybrids (Suwon 19, Kwanganok, Whengsungok, Suwonok ) of native corn hybrids and 13 hybrids (P 3156, P 3352, P 3144w, DK 501, DK 689, DK 713, DK 729, H 643.99, H 545.64, H 645.12, HC 7466, H 644.18, H ALISEO) of imported corn hybrids. The results obtained are summarized as follows; 1. The emergence rate of H643.99 was the highest with 97.0%. In rice black streaked dwarf virus(RBSOV), the hybrid of HC 7466 was lower infected with 1.6% than other hybrids. The plant hight of P 3144w was the highest with 339 cm and the stem length of P 3156 was the highest with 261 cm. In native com hybrids, the plant height and stem length of Kwanganok were recorded with 306 cm and 235 cm, respectively. 2. Leaf number and leaf area of Kwanganok were the greatest with 16 sheet per plant and $5,180\;{\textrm{m}^2}/l0a$, respectively. H 645.12 and H 545.64 had the greatest in ear to total dry matter ratio with 49.5% and 49.4%, respectively. 3. The fresh matter yield was significantly difference between growth stage, So Suwon 19 had the most level at 15 days before silking, P 3352 had the most level at silking date, Kwananok had the most level at 35 days a after silking. The fresh matter yield of native com hybrids such as Suwon 19 and Kwanganok was not apparent diffreences as compared with imported corn hybrids. 4. As the results of survey with dry weight, the quantity of dry matter accumulation were increase after silking. The varieties of P 3352, P 3156, Kwanganok, OK 713 were more quantity of dry matter production than DK 501, HC 7466. The Kwanganok of native com hybrid and Pioneer strain with high percentage of dry matter were higher dry weight than Limagrain strain. 5. HC 7466 had the largest LAR with $6.53\;{\textrm{cm}^2}/g$, H545.12 had the lowest LAR with $3.30\;{\textrm{cm}^2/g}$. P 3144 had the largest LAI, DeKalb strain including DK 713 were larger apparently than Limagrain strain including HC 7466 with 3.15. 6. The RGR of testing varieties was little difference of statistical significantly, but DK 501, and HC 7466 were lower than other corn hybrids. The CGR of native and American varieties was no apparent differences, but that of Limagrain strains were a large variation. According to the results obtained by this experiment, the eary growth such as emergence rate and RBSDV infection rate of Limagrain strains was more excellent than other strains. P 3156, P 3352, P 3144w, DK 713 and HC 7466 were suitable for silage condition such as dry matter yield, percentage of dry matter and % ear to total dry matter. The fresh and dry matter yield of native corn hybrids such as Suwon 19 and Kwanganok were not apparent differences as compared with imported corn hybrids, but percentage of dry matter was lower than other imported corn hybrids.

  • PDF