• Title/Summary/Keyword: Height Plan

Search Result 361, Processing Time 0.034 seconds

Analysis of Berth Operation Ratio in terms of Wave Response at Busan New Port Site (부산신항역 파랑반응에 따른 부두 가동율 해석)

  • Jeong, Jae-Hyun;Lee, Hak-Seung;Lee, Joong-Woo;Yang, Sang-Yong;Jeong, Young-Hwan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.57-62
    • /
    • 2006
  • Busan New Port, under construction aiming for the hub of Northeast Asia and Partly in operation, had damaged up to 48 billion Won due to Typhoon 'maemi' in 2003. The present criteria of domestic harbor design only describes about the critical wave height with respect to the size of vessel for harbor tranquility. The berth operation ratio which represents the annual available berthing days is depending on the efficiency of cargo handling work and this depends on the motion of the moored vessel due to the wave action and the characteristics of cargo gears. The motion of moored vessel might be related not only to the wave height but also to wave period. Furthermore, the berth operation ratio relies on external forces such as currents and winds, including the characteristics of mooring system and the specification of the moored vessel. In this study we only deal with berth operation ratio in normal sea state, considering wave and current by measured data and numerical calculation. Especially we tried to evaluate the berth operation ratio for each berth adopting the variation of dredging and reclamation plan and the change of wave environment during the process of the new port construction. For better understanding and analysis of wave transformation process, we applied the steady state spectral wave model and extended mild-slope wave model to the related site. This study summarizes comparisons of harbor responses predicted by two numerical predictions obtained at Busan New port site. Field and numerical model analysis was conducted for the original port plan and the final corrected plan.

  • PDF

Are "Unstable" Burst Fractures Really Unstable?

  • Woo, Jun Hyuk;Lee, Hyun Woo;Choi, Hong June;Kwon, Young Min
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.6
    • /
    • pp.944-949
    • /
    • 2021
  • Objective : The stability is an important factor to decide the treatment plan in thoracolumbar burst fracture patients. Patients with an unstable burst fracture generally need operative management. Decrease in vertebral body height, local kyphosis, involvement of posterior column, and/or canal compromise are considered important factors to determine the treatment plan. On the other hand, in thoracolumbar injury classification system (TLICS), surgery is recommended in patients with TLICS of more than 5 points. The purpose of this study was to apply the TLICS score in patients with thoracolumbar burst fractures and to distinguish the differences of treatment plan on burst fracture. Methods : All patients, diagnosed as a thoracolumbar burst fracture between January 2006 and February 2019 were included in this study. Unstable thoracolumbar burst fracture was defined as burst fracture with neurologic deficit, three-column injury, kyphosis over 30 degrees, decrease of anterior body height over 40 percent and canal comprise more than 50%. TLICS score was measured with morphology, neurological involvement and posterior ligamentous complex integrity. The existence of instability was compared with TLICS score. Results : Total 233 patients (131 men, 102 women) were included in this study. In Denis classification, 51 patients (21.9%) diagnosed as stable burst fracture while 182 patients (78.1%) had unstable burst fracture. According to TLICS, 72 patients (30.9%) scored less than 4, while 161 patients (69.1%) scored 4 or more. All the patients with stable burst fracture scored 2 in TLICS. Twenty-one patients (9.0) scored 2 in TLICS but diagnosed as unstable burst fracture. Thirteen patients had over 40% of vertebra body compression, four patients had more than 50% of canal compromise, three patients had both body compression over 40% and kyphosis over 30 degrees, one patients had both body compression and canal compromise. Fifteen patients presented kyphosis over 30 degrees, and three (20%) of them scored 2 in TLICS. Seventy-three patients presented vertebral body compression over 40% and 17 (23.3%) of them scored 2 in TLICS. Fifty-three patients presented spinal canal compromise more than 50%, and five (9.4%) of them scored 2 in TLICS. Conclusion : Although the instability of thoracolumbar burst fracture was regarded as a critical factor for operability, therapeutic strategies by TLICS do not exactly match with the concept of instability. According to the concept of TLICS, it should be reconsidered whether the unstable burst fracture truly unstable to do operation.

A Review and Analysis of the Thermal Exposure in Large Compartment Fire Experiments

  • Gupta, Vinny;Hidalgo, Juan P.;Lange, David;Cowlard, Adam;Abecassis-Empis, Cecilia;Torero, Jose L.
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.4
    • /
    • pp.345-364
    • /
    • 2021
  • Developments in the understanding of fire behaviour for large open-plan spaces typical of tall buildings have been greatly outpaced by the rate at which these buildings are being constructed and their characteristics changed. Numerous high-profile fire-induced failures have highlighted the inadequacy of existing tools and standards for fire engineering when applied to highly-optimised modern tall buildings. With the continued increase in height and complexity of tall buildings, the risk to the occupants from fire-induced structural collapse increases, thus understanding the performance of complex structural systems under fire exposure is imperative. Therefore, an accurate representation of the design fire for open-plan compartments is required for the purposes of design. This will allow for knowledge-driven, quantifiable factors of safety to be used in the design of highly optimised modern tall buildings. In this paper, we review the state-of-the-art experimental research on large open-plan compartment fires from the past three decades. We have assimilated results collected from 37 large-scale compartment fire experiments of the open-plan type conducted from 1993 to 2019, covering a range of compartment and fuel characteristics. Spatial and temporal distributions of the heat fluxes imposed on compartment ceilings are estimated from the data. The complexity of the compartment fire dynamics is highlighted by the large differences in the data collected, which currently complicates the development of engineering tools based on physical models. Despite the large variability, this analysis shows that the orders of magnitude of the thermal exposure are defined by the ratio of flame spread and burnout front velocities (VS / VBO), which enables the grouping of open-plan compartment fires into three distinct modes of fire spread. Each mode is found to exhibit a characteristic order of magnitude and temporal distribution of thermal exposure. The results show that the magnitude of the thermal exposure for each mode are not consistent with existing performance-based design models, nevertheless, our analysis offers a new pathway for defining thermal exposure from realistic fire scenarios in large open-plan compartments.

Practical Construction of Tsunami Inundation Map to Link Disaster Forecast/Warning and Prevention Systems (예경보와 방재시스템의 연계를 위한 지진해일 범람도의 실용적 작성)

  • Choi, Jun-Woo;Kim, Kyung-Hee;Jeon, Young-Joon;Yoon, Sung-Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.2
    • /
    • pp.194-202
    • /
    • 2008
  • In general, forecast tsunami heights announced for tsunami warning are computed by using a linear tsunami model with coarse grids which leads the underestimation of inundation area. Thus, an accurate tsunami inundation map corresponding the forecast tsunami height is needed for an emergency evacuation plan. A practical way to construct a relatively accurate tsunami inundation map was proposed in this study for the quantitative forecast of inundation area. This procedure can be introduced as in the followings: The fault dislocations of potential tsunami sources generating a specific tsunami height near an interested area are found by using a linear tsunami model. Based on these fault dislocations, maximum inundation envelops of the interested area are computed and illustrated by using nonlinear inundation numerical model. In this study, the tsunami inundation map for Imwon area was constructed according to 11 potential tsunami sources, and the validity of this process was examined.

The Proposition of Improvement Cutting Criteria for Tending Operation in a Natural Deciduous Forest (천연활엽수림 보육 시업을 위한 개선벌 대상목 선정 기준 적용)

  • Kim, Ji Hong;Kang, Sung Kee
    • Journal of Forest and Environmental Science
    • /
    • v.20 no.1
    • /
    • pp.40-50
    • /
    • 2004
  • This study was conducted to provide appropriate tending operation strategies for the natural deciduous forest, by the method of evaluating the stand quality, suggesting the removal plan for the undesirable trees, and predicting improvement cutting practice by tree quality evaluation. The results showed that average number of trees per ha was 717 stems, average DBH was 21.1cm. and average height was 13.6m. Canopy dominant species were in the order of Quercus serrata, Q. variabilis, Q. mongolica, Styrax obassia, and Ulmus davidiana var. japonica. Based on grades of four tree form factors for all tree in the study plots, we estimate the change of tree numbers. DBH and height with the improvement cutting by different tree grade. When the higher tree grade was applied to tending operation, the number of stem was decreased, but the values of DBH and height were not changed much, predicted to improve the stand quality.

  • PDF

Collapse of steel cantilever roof of tribune induced by snow loads

  • Altunisik, Ahmet C.;Ates, Sevket;Husem, Metin;Genc, Ali F.
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.273-283
    • /
    • 2017
  • In this paper, it is aimed to present a detail investigation related to structural behavior of laterally unrestrained steel cantilever roof of tribune with slender cross section. The structure is located in Tutak town in $A{\breve{g}}r{{\i}}$ and collapsed on October 25, 2015 at eastern part of Turkey is considered as a case study. This mild sloped roof structure was built from a variable I beam, and supported on steel columns of 5.5 m height covering totally $240m^2$ closed area in plan. The roof of tribune collapsed completely without any indication during first snowfall after construction at midnight a winter day, fortunately before the opening hours. The meteorological records and observations of local persons are combined together to estimate the intensity of snow load in the region and it is compared with the code specified values. Also, the wide/thickness and height/thickness ratios for flange and web are evaluated according to the design codes. Three dimensional finite element model of the existing steel tribune roof is generated considering project drawings and site investigations using commercially available software ANSYS. The displacements, principal stresses and strains along to the cantilever length and column height are given as contour diagrams and graph format. In addition to site investigation, the numerical and analytical works conducted in this study indicate that the unequivocal reasons of the collapse are overloading action of snow load intensity, some mistakes made in the design of steel cantilever beams, insufficient strength and rigidity of the main structural elements, and construction workmanship errors.

Comparative Study of Food Behaviors and Nutrients Intake according to the Bone Mineral Density of Female University Students (여대생의 골밀도에 따른 식행동과 영양소 섭취상태 비교연구)

  • Hong, Myung-Sun;Pak, Hee-Ok;Sohn, Chun-Young
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.1
    • /
    • pp.156-162
    • /
    • 2012
  • The purpose of this study was to investigate the effect and correlation of anthropometric data, eating behaviors, and nutrient intake on the bone mineral density(BMD) of female college students. 349 female college students were surveyed and their age, height, and weight were an average of 20.5 years, 163.2 cm and 54.0 kg, respectively. Their average BMI was 20.2, with 66% falling in the normal range, 21.8% classified as underweight, 8.0% as overweight, and obese individuals comprised 3.4% of the sample by BMI classification. Calcaneal BMD was measured and the average T-score was 0.117. The results of BMD measurements were normal in 268 people(76.8%), osteopenia was found in 71 individuals(20.3%), and osteoporosis in 10(2.9%), respectively. There was a significant difference in bone mineral density according to height(p<0.05) and BMI (p<0.01). There were significant differences between BMD and eating behavior, regularity of eating behaviors(p<0.05), instant food intake(p<0.05), eating out(p<0.05) and nutritional supplement intake(p<0.05). In addition, normal the group with normal BMD had a more desirable eating behavior compared to the osteopenia and osteoporosis afflicted groups. BMD had a significant difference according to the nutrient intake of calcium(p<0.05), vitamin A(p<0.05), and vitamin C(p<0.05). In conclusion, BMD showed a good correlation with height(p<0.01), BMI(p<0.01), body composition including total body water(p<0.05), FFM(p<0.05), body protein(p<0.05) and intake of calcium(p<0.05), iron(p<0.05), vitamin A(p<0.05), and vitamin C(p<0.05). Therefore, an education plan and training on balanced diets proper body weight control, and desirable eating behaviors for female college students will be needed.

Analysis of Technical Error of Manual Measurements (직접 측정한 인체치수의 기술적 오차 분석)

  • Park, Jinhee;Nam, Yun Ja
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.40 no.4
    • /
    • pp.641-649
    • /
    • 2016
  • Highly precision body measurements represent basic data required by industry and researches who wish to utilize information about the human body. The proficiency and expertise of the measurers have a significant influence on the error and accuracy of data when various parts from multiple subjects' bodies are measured. Therefore, in order to measure accurate body measurements (when measuring bodies directly), it is necessary to conduct objective analyses on errors. This study calculated the Relative Technical Error of Measurement (%TEM) using data that measured each of 24 subjects and discussed errors and methods to reduce errors by conducting comparison analysis based on measured items and objects. The result of analysis indicated that the errors based on age and gender of the objects of measurement were minor; however, there were comparatively distinct differences in measured errors based on measured items. 'Right and left Shoulder Angle' for all measured subjects displayed the greatest errors and standard deviations. 'Height' dimension, Lateral Malleolus Height and Head Height had big errors; in addition, 'Circumference', Neck Base Circumference and Armscye Circumference also had big errors. More careful measurements of such items with big errors require additional educational plan such as a proposal for more objective and detailed measurement methods. Items with small errors but big standard deviations such as Waist Circumference, Calf Circumference, Minimum Leg Circumference, Chest Circumference, Hip Circumference and Waist Circumference confirmed that errors for them greatly decreased with repeated experiments and resultant measurers increased proficiency; consequently, repeated measuring experiments for these items greatly enhance accuracy.

The Characteristics of Size by Classification of Worship-Space Types in the Central Hall of Buddhist Temple (사찰 주불전의 예불공간 유형에 따른 규모 특성)

  • Jo, Woo-Ju;Kim, Tai-Young
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.13 no.3
    • /
    • pp.83-90
    • /
    • 2011
  • The purpose of this study is to analyze size and proportion of plan and section, and derive characteristics by types of worship-space in central hall of buddhist temple. This study covers 45 buddhist temples as designated national treasure and treasure. Types of central hall of buddhist temple are 'Columnless Type', 'Inner Column Type', and 'Colonnade Type'. The results are as follows. Firstly, in the proportion of width and length, 'Columnless Type' is mostly represented with 1:0.73, 'Inner Column Type' with 1:0.54 and seems to be widening for the other types, and 'Colonnade Type' is same proportion with 'Columnless Type'. Secondly, in the proportion of width and height, 'Columnless Type' is 1:0.61 and sizes of worship-space of this type are different but the proportion is same. In the 'Inner Column Type', worship-space is enlarged because a buddhist altar is hustled into the rear. Thirdly, in the proportion of length and height, all types are represented with similar proportion as 1:1. Finally, proportion of the volume of worship-space in 'Columnless Type' is 1(width):0.74(length):0.60(height). The case of 'Inner Column Type' is 1:0.57:0.57 and length of worship-space is shortened, so characteristics of horizontality is emphasized. The space of same size with the proportion of 'Columnless Type' is situated in the inside of worship-space in 'Colonnade Type'.

A Study on the Deformation Characteristics of the Roof Signboard Size in Wind Pressure Formation (풍압 형성에 따른 옥상광고판 크기별 특성에 관한 연구)

  • Hong, Ji-Wan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.401-408
    • /
    • 2019
  • This study numerically examined the maximum wind pressure distribution of a billboard on the roof of a middle-rise building. The deformation caused by the maximum wind pressure was examined. For the numerical analysis, the signboard was assumed to be installed on $(b)20m{\times}(d)10m{\times}(h)$ buildings. The maximum wind pressure was measured using four models with the standard model and different sizes of the signboard. The numerical analysis showed that the horizontal deformation predominantly occurs as the shape of the signboard becomes closer to a rectangle, and high wind pressure and deformation occur at the corners of both ends. As the height of the signboard increases, vertical deformation predominantly occurs, and static pressure forms on the backside. When the height is lower than the width of the signboard, the wind pressure is concentrated on the center of the roof. Therefore, the distribution of the maximum wind pressure is stable, and the effect of the wind pressure is relatively low as the height-to-width ratio approaches 1.