• Title/Summary/Keyword: Hec-RAS

Search Result 342, Processing Time 0.028 seconds

An Improvement and Applicability of Physical Disturbance Evaluation Technique by Quantification in River System (정량화에 의한 물리적 하천교란 평가기법의 개선과 적용)

  • Choi, Heung-Sik;Shim, Kyu-Rang;Lee, Woong-Hee
    • Journal of Wetlands Research
    • /
    • v.17 no.3
    • /
    • pp.209-220
    • /
    • 2015
  • This study has improved the existed physical disturbance evaluation assessment technique in a river and analysed its applicability. The improvements are the quantitative evaluation items instead of qualitative one by providing the background and their evaluation equations, corresponding detailed itemization of evaluation score, and the direct input of hydraulic characteristics and geometrical changes by numerical simulation. In order to confirm the applicability of improved disturbance evaluation technique, the comparison and analysis between the evaluation results of existed and improved techniques have been carried out by applying to the 6 cases of natural, urban, and mountainous streams. Direct input of numerical simulation results of HEC-RAS enables the evaluation simple for 8 evaluation items excluding the items of habitat environment and bottom substrate. The improved disturbance evaluation technique, which evaluates the degree of disturbance sensitively by the quantitative and detailed itemized evaluations, has been confirmed the appropriate applicability by applying to river systems.

Flood Inundation Analysis using XP-SWMM Model in Urban Area (XP-SWMM 모형을 적용한 도시지역의 침수해석)

  • Lee, Jong-Hyeong;Yeon, Kee-Seuk
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.5
    • /
    • pp.155-161
    • /
    • 2008
  • The flood damage shows different types in natural river watershed and in urban drainage watershed. In recent, increasing of the impervious area gives rise to short concentration time and high peak discharge comparing with natural watershed and it is a cause of urban flood damage. In this paper, we use a XP-SWMM model developed based on EPA-SWMM version for analyzing the inundation area, inundation depth and inundation area considering building effect. The two events(2005.06, 2005.07) has been used for the validation of model. HEC-RAS model has been applied for simulation of changing water level, and the results has been used for calculating area of the inundation. The observed inundation area(21.41 ha) in August, 1998 was in good agreement with the simulated value(23.45 ha) of XPSWMM model. An influence of inundation area considering building effects has been analized by the DTM of XP-SWMM model.

Development and Hydraulic Characteristics of Continuous Block System in River Bank Protection (II) - Comparison of Numerical Analysis with Physical Modeling - (일체형 식생호안블록 시스템 개발 및 수리특성 연구(II) -일체형 호안블록시스템 수치모의를 통한 효과 분석-)

  • Jang, SukHwan
    • Journal of Wetlands Research
    • /
    • v.10 no.3
    • /
    • pp.99-109
    • /
    • 2008
  • This research focused on analyzing and comparing between the results of hydraulic physical modeling and the results of numerical modeling of continuous block system in river bank protection which is newly developed in-situ block system. To verify the hydraulic physical modeling and review the effectiveness, the numerical modeling was needed against the model test results for vegetation application or not. HEC-RAS model was for 1 dimensional numerical analysis and SMS was for 2 dimensional numerical analysis. The results of the two dimensional numerical simulation, under the condition of roughness coefficient calibration, show similar and rational consequence against the physical modeling. These satisfactory results show that the accomplished results of hydraulic modeling and the predicted results of numerical modeling corresponded reasonably each others.

  • PDF

Tracking of water level curve for improvement of dam inflow measurement in Youngdam (용담호 홍수기 유입량 산정 개선을 위한 수면곡선 추적)

  • Hwang, Eui-Ho;Kwon, Hyung-Joong;Lee, Geun-Sang;Lee, Eul-Rae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.2233-2237
    • /
    • 2008
  • 기존 댐저수지 유입량 산정은 수위-저수량곡선에 댐축에서 측정된 수위를 적용하여 시간당 저수량변화를 계산한 후 방류량을 감안하여 산정하고 있으나, 특히 홍수시 저수지내의 수위가 균일하지 않아 유입량 산정 시 오차 원인이 되고 있다. 홍수기 댐 저수지의 운영에 있어서 가장 큰 불확실도를 가지고 있는 유입량의 정확한 모의를 위해서는 유역 상류 유입부 유량뿐 아니라 저수지 내에서의 수위관측 필요하며, 또한 기존 방법에 의한 유입량 계산의 오차 규명 필요하다. 이러한 문제점을 해결하기 위해서는 GIS를 이용한 저수지의 저수위-저류량곡선 개선 및 댐저수지 구간별 수위관측을 통한 실시간 홍수 유입량 산정 시스템 도입이 절실히 요구되고 있는 실정이다. 본 연구에서 현행 댐 저수지에서 운영되고 있는 수위관측소를 포함하여 관측지점을 확대하고 실시간 수위관측이 가능한 통신체계를 구축하고자 하였다. 관측지점의 확대는 기존의 문제점을 해결하는데 있어 주요 지점의 수면 프로파일을 구축하여 호내 유입량 산정에 대한 재검토를 진행하고자 하였으며, 이를 위해 구간별 수위 모의가 가능한 HEC-RAS 모형을 이용하여 저수지 내의 수면곡선 분포를 모의하고 저수지 내에서 관측한 수위자료와 비교하였다. 또한 관측된 수위자료의 체계적인 관리 체계 구축을 위해 실시간 모니터링이 가능하고, 통신망의 안전성 확보를 통한 결측 자료가 발생하지 않도록 USN Gateway와 CDMA를 연동하여 통신망을 구성하였다. 나아가, 댐 저수지 유입량 산정에 대한 재검토와 실시간 수위관측 방법에 대한 신기술 도입을 통하여 물관리 부서에 즉시 적용이 가능하도록 유입량 산정 방법과 센서 기술 적용 방법 및 확장성을 제시하였다.

  • PDF

Hydraulic Behavior and Characteristic Analysis by Steady & Unsteady Flow Analysis of Natural Stream (하도 합류부의 정류.부정류해석에 따른 수리학적 변화 특성 분석)

  • Ahn, Seung-Seop;Yim, Dong-Hee;Park, Ro-Sam;Kwak, Tae-Hwa
    • Journal of Environmental Science International
    • /
    • v.17 no.9
    • /
    • pp.957-968
    • /
    • 2008
  • The purpose of this study is to analyze the characteristics of hydraulic behavior of the natural channel flow according to the temporal classification mode, and thus propose the hydraulic analysis method for future channel design. For analysis, the temporal flow characteristics of the channel section was divided into the steady flow and the unsteady flow. For hydraulic analysis, the HEC-RAS model, which is a one-dimensional numerical analysis model, and the SMS-RAM2 model, which is a two-dimensional model, were used and the factors used for analysis of hydraulic characteristics were flood elevation and flow rate. The flow state was analyzed on the basis of the one-dimensional steady flow and unsteady flow for review. In the unsteady flow analysis the flow rate changed by $(-)0.16%{\sim}(+)0.26%$, and the flood elevation varied by $(-)0.35%{\sim}(+)0.51%$ as compared to the values in the steady flow analysis. Given these results, in the one-dimensional flow analysis based on the unsteady flow the flood elevation and flow rate were greater than when the analysis was done on the basis of the steady flow. The flow state was analyzed on the basis of the two-dimensional steady flow and unsteady flow. In the unsteady flow analysis the flow rate varied by $(-)0.16%{\sim}(+)1.08%$, and the flood elevation changed by $(-)0.24%{\sim}(+)0.41%$ as compared to the values in the steady flow analysis. Given these analysis results, in the two dimensional flow analysis based on the unsteady flow, the flood elevation and flow rate were greater than when the analysis was done on the basis of the steady flow.

Analysis for the Effect of Channel Contraction for Sedimentation Reduction on the Flood Level and Bed Changes in the Lower Nakdong River (낙동강 하류의 퇴사저감을 위한 하폭축소방법이 홍수위변화 및 하상변동에 미치는 영향 분석)

  • Jang, Eun-Kyung;Ji, Un
    • Journal of Environmental Science International
    • /
    • v.22 no.3
    • /
    • pp.291-301
    • /
    • 2013
  • Sediment from the upstream channel has been deposited near the Nakdong River Estuary Barrage (NREB) due to the mild slope and decreased velocity. The annual mechanical dredging to ensure the flood capacity has been performed to remove the deposited sediment. However, the dredging method is not considered as an effective countermeasure due to high cost and long time to operate. Therefore, many methods for sedimentation reduction have been proposed for NREB. Especially, the channel contraction method to mitigate sedimentation problem by changing the channel geometry from 2 km to 3 km upstream of NREB has been recently suggested as an effective countermeasure. However, there is the possibility that the channel contraction method induces flood level increase compared to original condition. Therefore, it is necessary to investigate quantitatively the flood level changes in the upstream and downstream section due to the channel contraction method for NREB. In this study, water level changes by 10% channel contraction of whole width has been evaluated using the HEC-RAS model and simulated with and without channel contraction for various flood discharge. As a result, water level in the section where the channel was contracted was decreased by 0.02 m and flood level at the upstream of channel contracted was increased up to 0.015 m for the 500-year flood.

River Hydraulic Analysis and Application Using EFDC Model Focused on Geumgang Weir Section (EFDC 모형을 이용한 금강보 구간 하천수리해석 및 적용성 검토)

  • Seo, Sung-Ho;Hur, Young-Teck;Jeong, Sang-Man
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.39-39
    • /
    • 2011
  • 하천에서 수공구조물을 설계시 구조물의 규모, 형식, 운영방식, 안정성 등을 검토하기 위하여 일반적으로 수리모형실험과 수치모형실험을 이용한다. 수리모형실험은 자연현상의 왜곡을 최소화하여 검토결과를 얻을 수 있다는 장점이 있지만, 많은 시간과 비용, 인력 및 공간이 필요하기 때문에 단기간에 다양한 검토가 필요한 경우에는 많은 제약이 따른다. 반면에 수치모형실험은 제한적인 조건에서 검토목적 및 용도에 따라 다양한 수치모의기법을 활용하여 상대적으로 낮은 비용과 신속하고 다양한 검토가 가능하다는 장점을 가지고 있다. 그러나 수치모형실험은 어디까지나 자연현상에 대한 수학적, 물리적 기법을 활용한 분석이기 때문에 결과에 대한 신뢰성 확보가 매우 중요하다. 최근에는 컴퓨터의 계산능력 향상과 유체의 복잡한 동수역학적 거동 해석 기법의 다양화, 그리고 많은 적용성 검토 연구결과로 인한 신뢰성 향상 등으로 인해 수치모형실험에 대한 관심이 높아지고 있다. 본 연구는 현재 금강에 건설 중인 금강보에 대하여 다차원 수치모형인 EFDC(Environmental Fluid Dynamics Code)를 이용하여 하천 구조물 및 물리적 환경변화에 대한 정밀수리분석을 실시하기 위한 사전절차로, EFDC 모형을 하천수리해석에 적용할 경우 모형에 포함되어 있는 다양한 변수설정 및 제약조건들에 대하여 적용한계를 검토하고자 한다. 검토방법은 금강보가 건설되기 이전의 하천지형 상황에서 EFDC 모형과 HEC-RAS 모형을 이용한 수리분석을 수행하고, 수리거동 결과 들을 상호 비교 분석 한다. 수치모의 대상구간은 금강보 건설구간을 포함하여 약 20km 구간이고, 대상구간에 대하여 3차원 정밀지형자료를 구축하였으며, 과거 호우사상에 대한 구간 내 관측 수위 및 모형별 계산수위결과를 비교 검토하였다.

  • PDF

A Study on 3 Dimensional Modeling of Keum-man Connection Canal using GIS and considering Hydraulic Analysis (GIS와 수리학적 해석을 고려한 금만연결수로의 3차원 모델링에 관한 연구)

  • Kim, Dae-Sik;Nam, Sang-Woon;Kim, Tai-Cheol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.5
    • /
    • pp.3-15
    • /
    • 2008
  • This study aims to simulate the 3 dimensional (3D) model of Keum-man connection canal using geographic information system (GIS) as well as considering design in viewpoint of engineering. The canal connects from Keumkang to Mangyungkang in order to supply fresh water into Saemankeum lake. This study used 3 dimensional spatial planning model (3DSPLAM) process to generate the 3D model, which has not only several planning layers in actual process, but also their corresponding layers in modeling process to simulate 3D space of rural villages. The discharge of the canal is $20m^3/s$ on slope of 1/28,400 in the canal length of 14.2km, which consists of pipe line and open channel. This study surveyed the route of the canal and its surrounding environment for facilities to make images in the 3D graphic model. Besides, the present study developed data set in GIS for geogrphical surface modeling as well as parameters in hydraulic analysis for water surface profile on the canal using HEC-RAS model. From the data set constructed, this study performed analysis of water surface profile with HEC-RAS, generation of digital elevation model (DEM) and 3D objects, design of the canal section and route on DEM in AutoCAD, and 3D canal model and its surrounding 3D space in 3DMAX with virtual reality. The study result showed that the process making 3D canal model tried in this study is very useful to generate computer graphic model with the designed canal on the surface of DEM. The generated 3D canal can be used to assist decision support for the canal policy.

An Application Analysis of Vegetation Permission Map in Urban Stream in Korea (국내 도시하천에 대한 식수허가지도의 적용성 검토)

  • Lee, Joon-Ho;Yoon, Sei-Eui
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.3 s.18
    • /
    • pp.47-55
    • /
    • 2005
  • In order to design and manage the urban streams, the change of hydraulic characteristics by vegetation must be analyzed clearly. Planting criteria of vegetation in a urban stream were investigated and the design method of vegetation permission map was analyzed in this study. In addition, variations of water level due to vegetation are calculated by quasi two dimensional numerical model, HEC-RAS model and FESWMS model. Joongrang stream(Gunja bridge${\sim}$Jangan bridge reach) was selected as the case study stream. According to the criteria of vegetation, it is decided that vegetation density was $0.5{\sim}1.0$ tree/ha for selected tall tree in right floodplain and shrubs can be planted in the right and left floodplain area except the important hydraulic structures site. The selected shrubs planting simulations with three models show that water level in selected floodplain area increase approximately 12cm for the 100 year return period flood. The applicability of vegetation permission map in Korean urban stream was analyzed in this paper.

Patterns and Trends of Water Level and Water Quality at the Namgang Junction in the Nakdong River Based on Hourly Measurement Time Series Data (낙동강 남강 합류부 수위와 수질 패턴 및 추세)

  • Yang, Deuk Seok;Im, Teo Hyo;Lee, In Jung;Jung, Kang Young;Kim, Gyeong Hoon;Kwon, Heon Gak;Yoo, Je-Chul;Ahn, Jung Min
    • Journal of Environmental Science International
    • /
    • v.27 no.2
    • /
    • pp.63-74
    • /
    • 2018
  • As part of the Four Major Rivers Restoration Project, multifunctional weirs have been constructed in the rivers and operated for river-level management. As the weirs play a role in draining water from tributaries, the aim of this study was to determine the influence of the weirs on the water level of the Nam River, which is one of the Nakdong River's tributaries. Self-organizing maps (SOMs) and a locally weighted scatterplot smoothing (LOWESS) technique were applied to analyze the patterns and trends of water level and quality of the Nakdong River, considering the operation of the Changnyeong-Haman weir, which is located where the Nam River flows into the Nakdong River. The software program HEC-RAS was used to find the boundary points where the water is well drained. Per the study results at the monitoring points ranging between the junction of the two rivers and 17.5 km upstream toward the Nam River, the multifunctional weir influenced the water level at the Geoyrong and Daesan observation stations on the Nam River and the water quality based on automatic monitoring at the Chilseo station on the Nakdong River was affected strongly by the Nakdong River and partly by the Nam River.