• 제목/요약/키워드: Heavy-weight Vehicle

검색결과 59건 처리시간 0.028초

단순거더교의 중차량 통과허용하중 설정에 관한 연구 (Evaluation of Permit Vehicle Weight for Simple Girder Bridges)

  • 김상효;양남석;김종학;전귀현
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제4권4호
    • /
    • pp.211-218
    • /
    • 2000
  • Many bridges are severely damaged by the overloaded heavy vehicle and the trend will become more serious because the traffic volume is continuously increasing. Currently, the vehicles with gross weights over 40 tonf or axle weight over 10 tonf are not allowed on the public road. However, this regulation is not based on a systematic study on the bridge capacity and assumed to be much too conservative depending on the vehicle types and bridge types. In this study, the permit weights of heavy vehicles of diverse axle spacings and axle load distribution are calculated considering the structural characteristics of bridge superstructures. In order to consider the various load effects of heavy weight vehicle crossings, three conditions are considered in the calculation of permit vehicle load. From the results, the permit vehicle weights of the simple girder bridges are calculated.

  • PDF

도로교의 중차량 통과허용하중 설정에 관한 연구 (A Study on Permit Vehicle Weight for Highway Bridges)

  • 김상효;양남석;김종학;전귀현
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 봄 학술발표회논문집
    • /
    • pp.222-229
    • /
    • 2000
  • Malty bridges are severely damaged by the overloaded heavy vehicle and tile trend will become more serious because the traffic volume is continuously increasing. Currently, the vehicles with gross weights over 40 tons or axle weight over 10 tons are not allowed on the public road. However, this regulation is not based on a systemetic study on the bridge capacityand assumed to be much too conservative depending on the vehicle types ans bridge types. In this study, the permit weights of heavy vehicles of diverse axle spacings and axle load distribution are calculated considering the structural characteristics of bridge superstructures. In order to consider the various load effects of heavy weight vehicle crossings, three conditions are considered in the calculation of permit vehicle load. From the results, the permit vehicle weights of bridges are calculated and simplified formulas which can be used in the case when only the vehicle dimension are known are presented.

  • PDF

대형 트럭용 경량 알루미늄 I형 래디어스 로드 개발 (Development of Lightweight Aluminum I Type Radius Rod for Heavy Trucks)

  • 최규재;이기녕;하태수
    • 한국자동차공학회논문집
    • /
    • 제16권6호
    • /
    • pp.58-64
    • /
    • 2008
  • An aluminum radius rod using rheo-forging method has been developed for heavy commercial vehicles to decrease vehicle unsprung weight. To design the shape of the rod, structural simulations are performed using two load cases. To evaluate durability performance of the rods, a test system which has simultaneous 3 axes actuating system is developed. And 3 axes durability test conditions are established based on vehicle field tests. Using the test systems and the conditions, the durability test is carried out and the rods have passed the test conditions of 700,000 cycles. The weight of a developed aluminum radius rod is 4.2kg and it was drastically reduced by 48.8 percent in comparison with the weight of a steel radius rod.

군용 중차량의 도로교 통과 타당성에 관한 연구 (Feasibility Study on the Road Bridge Passed by Military Heavy Vehicle)

  • 박병희;송재호;장일영
    • 한국방재학회 논문집
    • /
    • 제6권2호
    • /
    • pp.37-44
    • /
    • 2006
  • 기존의 SOC를 보다 효율적으로 활용할 수 있는가를 고민하는 것은 SOC의 증설을 위한 연구.개발.투자만큼이나 중요한 문제이다. 또한 총중량 51톤의 군용 중차량인 전차가 현행법상 국내 교량의 통행에 제한을 받고 있다는 현실적인 문제에서 출발하여, 국내 외의 여러 연구 결과를 바탕으로 축하중 10톤, 총중량 40톤의 현 도로법상 차량의 운행제한 조항을 궤도하중인 군용전차에 일괄 적용하기에는 무리가 있다. 미국 및 NATO에서 사용하고 있는 교량해석방법의 또 다른 표준인 표준급수분류제도 등을 이용하여 우리 실정에 맞게 검증하고, 우리의 단위체계나 교량해석방법과는 다른 산물로서의 데이터베이스로 손쉽게 활용할 수 있어야 하겠다.

Experience with an On-board Weighing System Solution for Heavy Vehicles

  • Radoicic, Goran;Jovanovic, Miomir;Arsic, Miodrag
    • ETRI Journal
    • /
    • 제38권4호
    • /
    • pp.787-797
    • /
    • 2016
  • Mining, construction, and other special vehicles for heavy use are designed to work under high-performance and off-road working conditions. The driving and executive mechanisms of the support structures and superstructures of these vehicles frequently operate under high loads. Such high loads place the equipment under constant risk of an accident and can jeopardize the dynamic stability of the machinery. An experimental investigation was conducted on a refuse collection vehicle. The aim of this research was to determine the working conditions of a real vehicle: the kinematics of the waste container, that is, a hydraulic rotate drum for waste collection; the dynamics of the load manipulator (superstructure); the vibrations of the vehicle mass; and the strain (stress) of the elements responsible for the supporting structure. For an examination of the force (weight) on the rear axle of a heavy vehicle, caused by its own weight and additional load, a universal measurement system is proposed. As a result of this investigation, we propose an alternative system for continuous vehicle weighing during waste collection while in motion, that is, an on-board weighing system, and provide suggestions for measuring equipment designs.

차량성능을 고려한 최대종단경사 합리화 연구 (Theoretical Review of Highway Grades Considering Vehicle Performances)

  • 김상엽;이승용;한형관;최재성
    • 대한교통학회지
    • /
    • 제25권5호
    • /
    • pp.79-90
    • /
    • 2007
  • 도로의 최대종단경사는 차량의 등판능력에 좌우된다. 과거에 비해 차량의 성능이 좋아질수록 도로의 최대종단경사는 조정될 수 있다. 하지만, 미국(AASHTO, 1990, 2004)에서는 설계기준트럭이 300lb/hp에서 200lb/hp로 성능이 상승했음에도 불구하고, 적용되는 최대 종단경사는 거의 변화가 없다. 따라서, 현재 차량의 성능을 고려한 최대종단경사의 검토 및 조정의 검토가 필요한 실정이다. 특히 국내의 지형은 산악지가 많고, 험준한 지역이 많으므로 실정에 맞도록 최대종단경사의 검토가 필요하다. 본 연구에서는 차량의 성능의 개선과 도로 설계자가 당면한 결정의 문제를 인식하고 세계 각국의 지형과 최대종단경사 적용기준을 비교하여 우리나라의 최대종단경사의 적정성을 확인한다. 또한, 교통시뮬레이션 프로그램을 이용하여 차량의 성능향상에 따른 새로운 트럭 성능곡선을 토대로 최대종단경사를 판단한 결과 $1{\sim}2%$ 정도 종단경사 완화가 가능한 것으로 판단한다.

HETS 차량의 교량 통과 가능성에 관한 연구 (Feasibility Study on Road Bridge Passed by Heavy Equipment Transporter)

  • 강영철;이필재
    • 한국군사과학기술학회지
    • /
    • 제12권2호
    • /
    • pp.236-247
    • /
    • 2009
  • In Korea, the driving system restriction criteria is strictly applied(gross weight 400kN, axial load 100kN). Especially after the Seoungsu Bridge accident, safety factor has been strictly applied. The Safety factor is applied to the cumulative results for each steps like design, construction, maintenance of the Bridge. Because of it, the bridge is undervalued compared to its capacity. So, this generates loss for both private and military sector(eg. logistical delays, structural damage, etc.). But analyzing data from many existing researches we have confirmed that the military heavy vehicle may pass through the first class bridges. In consequence, this study have focused on determining whether HETS vehicles can pass over the first class bridge, without safety issues, using MIDAS structural analysis program. The results have confirmed that the military heavy vehicle may pass over the bridge.

${\cdot}$${\cdot}$대형 중고 승용차량에 대한 차 대 차 충돌시험을 통한 차체변형 및 인체상해 특성에 관한 연구 (A Study on Human Injury Characteristics and Vehicle Body Deformation with Car to Car Crash Test for Crash Compatability)

  • 임종훈;박인송;허승진
    • 한국자동차공학회논문집
    • /
    • 제13권6호
    • /
    • pp.135-141
    • /
    • 2005
  • Currently many safety assessment tests are conducted by crashing a vehicle against a rigid or deformable barrier. It is quite rational to evaluate crash performance of a vehicle in a barrier test in terms of vehicle stiffness and strength. However, there has been a lot of debate on whether barrier testing is a duplicate of real world crash collisions. One of the issues is car to car compatability. There are two essential subjects in compatability. One is partner-protection when crashing into another vehicle and the other is self-protection when struck by another vehicle. When considering a car to car frontal crash between a mini car and a large heavy car, it is necessary to evaluate human body stiffness of each vehicle. In this study, in order to evaluate the compatability of cars in car-to-car crashes, four tests were conducted. Test speed of each car is 48.3km/h, and the overlap of the mini and large car is $40\%$, and the overlap of the small cars is $100\%$. In all tests, only a drive dummy is used. The test results of the car to car crash test show that vehicle safety standard of mini car is not satisfied compared with large heavy car and HIC value of mini car is higher than large car. In this case observed that the relatively lower stiffness and weight of the mini car resulted in absorbing a large share of the total input energy of the system when crashed into the large heavy car.

중량 궤도차량의 궤도 패드형상에 따른 내구성 해석의 융합 기술 연구 (Convergence Technique Study of Durability Analysis due to the Track Pad Shape of Track Vehicle with Heavy Weight)

  • 이정호;조재웅
    • 한국융합학회논문지
    • /
    • 제7권1호
    • /
    • pp.177-182
    • /
    • 2016
  • 중공업과 군사목적으로 사용되는 궤도차량은 고중량의 차체를 버티기 위해 차체에서 전달되는 하중으로 기동륜을 감싸고 있는 링크는 큰 힘을 받게 되는데, 이 발생된 힘은 궤도전체의 내구성 저하를 야기하게 된다. 본 논문에서는 3가지의 상용화된 궤도 패드의 형상들을 가진 모델들을 설계하고, 내구성 저하로 발생될 수 있는 궤도패드의 마모와 링크의 파손을 효과적으로 줄일 수 있는 모델을 고안하였다. 또한 본 연구 결과를 궤도차량 설계에 접목함으로써, 파손방지와 내구성향상을 위한 안전설계에 기여할 수 있으며, 패드 형상의 디자인적인 요소를 융합기술에 접목하여 그 미적인 감각을 나타낼 수 있다.

Performance of bridge structures under heavy goods vehicle impact

  • Zhao, Wuchao;Qian, Jiang;Wang, Juan
    • Computers and Concrete
    • /
    • 제22권6호
    • /
    • pp.515-525
    • /
    • 2018
  • This paper presents a numerical study on the performance of reinforced concrete (RC) bridge structures subjected to heavy goods vehicle (HGV) collision. The objectives of this study are to investigate the dynamic response and failure modes of different types of bridges under impact loading as well as to give an insight into the simplified methods for modeling bridge structures. For this purpose, detailed finite-element models of HGV and bridges are established and verified against the full-scale collision experiment and a recent traffic accident. An intensive parametric study with the consideration of vehicle weight, vehicle velocity, structural type, simplified methods for modeling bridges is conducted; then the failure mode, impact force, deformation and internal force distribution of the validated bridge models are discussed. It is observed that the structural type has a significant effect on the force-transferring mechanism, failure mode and dynamic response of bridge structures, thus it should be considered in the anti-impact design of bridge structures. The impact force of HGV is mainly determined by the impact weight, impact velocity and contact interface, rather than the simplification of the superstructure. Furthermore, to reduce the modeling and computing cost, it is suggested to utilize the simplified bridge model considering the inertial effect of the superstructure to evaluate the structural impact behavior within a reasonable precision range.